Aligning images in the wild
Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors' instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the dif...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Wen-Yan Lin Linlin Liu Matsushita, Y. Kok-Lim Low Siying Liu |
description | Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors' instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the difficulty in utilizing local information to canonically define the orientation (scale and rotation) at which a patch's descriptor should be computed. We address this issue by jointly estimating correspondence and relative patch orientation, within a hierarchical algorithm that utilizes a smoothly varying parameterization of geometric transformations. By collectively estimating the correspondence and orientation of all the features, we can align and orient features that cannot be stably matched with only local information. At the price of smoothing over motion discontinuities (due to independent motion or parallax), this approach can align image pairs that display significant inter-image appearance variations. |
doi_str_mv | 10.1109/CVPR.2012.6247651 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6247651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247651</ieee_id><sourcerecordid>6247651</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1331-82cf9ea8c09cc37c30232c8e6d439fea9e485d2d639845f791832190b46e0f133</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhFdUsNY8gPQmL5B4fjabPZclaBUKiqi3JW7OxpUYpBHEtzdgnZthYPiYMeYSoUQEuWpeHh5LAqTSka1dhUfmHK2rGYk8HZtMav-fnT0xCwTHhROUM5NN0zvMmhsgtDCr9ZD6MY19nj7aXqc8jfnXm-bfaeguzGlsh0mzgy_N8831U3NbbO83d816WyRkxsJTiKKtDyAhcB0YiCl4dZ1lidqKWl911DkWb6tYC3omFHi1TiHOiKVZ_XGTqu4-9_OS_c_u8I1_AXSuPTE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Aligning images in the wild</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wen-Yan Lin ; Linlin Liu ; Matsushita, Y. ; Kok-Lim Low ; Siying Liu</creator><creatorcontrib>Wen-Yan Lin ; Linlin Liu ; Matsushita, Y. ; Kok-Lim Low ; Siying Liu</creatorcontrib><description>Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors' instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the difficulty in utilizing local information to canonically define the orientation (scale and rotation) at which a patch's descriptor should be computed. We address this issue by jointly estimating correspondence and relative patch orientation, within a hierarchical algorithm that utilizes a smoothly varying parameterization of geometric transformations. By collectively estimating the correspondence and orientation of all the features, we can align and orient features that cannot be stably matched with only local information. At the price of smoothing over motion discontinuities (due to independent motion or parallax), this approach can align image pairs that display significant inter-image appearance variations.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 9781467312264</identifier><identifier>ISBN: 1467312266</identifier><identifier>EISBN: 1467312282</identifier><identifier>EISBN: 1467312274</identifier><identifier>EISBN: 9781467312271</identifier><identifier>EISBN: 9781467312288</identifier><identifier>DOI: 10.1109/CVPR.2012.6247651</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Frequency modulation ; Image color analysis ; Imaging ; Lighting ; Robustness ; Vectors</subject><ispartof>2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1-8</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wen-Yan Lin</creatorcontrib><creatorcontrib>Linlin Liu</creatorcontrib><creatorcontrib>Matsushita, Y.</creatorcontrib><creatorcontrib>Kok-Lim Low</creatorcontrib><creatorcontrib>Siying Liu</creatorcontrib><title>Aligning images in the wild</title><title>2012 IEEE Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors' instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the difficulty in utilizing local information to canonically define the orientation (scale and rotation) at which a patch's descriptor should be computed. We address this issue by jointly estimating correspondence and relative patch orientation, within a hierarchical algorithm that utilizes a smoothly varying parameterization of geometric transformations. By collectively estimating the correspondence and orientation of all the features, we can align and orient features that cannot be stably matched with only local information. At the price of smoothing over motion discontinuities (due to independent motion or parallax), this approach can align image pairs that display significant inter-image appearance variations.</description><subject>Equations</subject><subject>Frequency modulation</subject><subject>Image color analysis</subject><subject>Imaging</subject><subject>Lighting</subject><subject>Robustness</subject><subject>Vectors</subject><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><isbn>1467312282</isbn><isbn>1467312274</isbn><isbn>9781467312271</isbn><isbn>9781467312288</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91Kw0AUhFdUsNY8gPQmL5B4fjabPZclaBUKiqi3JW7OxpUYpBHEtzdgnZthYPiYMeYSoUQEuWpeHh5LAqTSka1dhUfmHK2rGYk8HZtMav-fnT0xCwTHhROUM5NN0zvMmhsgtDCr9ZD6MY19nj7aXqc8jfnXm-bfaeguzGlsh0mzgy_N8831U3NbbO83d816WyRkxsJTiKKtDyAhcB0YiCl4dZ1lidqKWl911DkWb6tYC3omFHi1TiHOiKVZ_XGTqu4-9_OS_c_u8I1_AXSuPTE</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Wen-Yan Lin</creator><creator>Linlin Liu</creator><creator>Matsushita, Y.</creator><creator>Kok-Lim Low</creator><creator>Siying Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201206</creationdate><title>Aligning images in the wild</title><author>Wen-Yan Lin ; Linlin Liu ; Matsushita, Y. ; Kok-Lim Low ; Siying Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1331-82cf9ea8c09cc37c30232c8e6d439fea9e485d2d639845f791832190b46e0f133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Equations</topic><topic>Frequency modulation</topic><topic>Image color analysis</topic><topic>Imaging</topic><topic>Lighting</topic><topic>Robustness</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Wen-Yan Lin</creatorcontrib><creatorcontrib>Linlin Liu</creatorcontrib><creatorcontrib>Matsushita, Y.</creatorcontrib><creatorcontrib>Kok-Lim Low</creatorcontrib><creatorcontrib>Siying Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wen-Yan Lin</au><au>Linlin Liu</au><au>Matsushita, Y.</au><au>Kok-Lim Low</au><au>Siying Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Aligning images in the wild</atitle><btitle>2012 IEEE Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1063-6919</issn><isbn>9781467312264</isbn><isbn>1467312266</isbn><eisbn>1467312282</eisbn><eisbn>1467312274</eisbn><eisbn>9781467312271</eisbn><eisbn>9781467312288</eisbn><abstract>Aligning image pairs with significant appearance change is a long standing computer vision challenge. Much of this problem stems from the local patch descriptors' instability to appearance variation. In this paper we suggest this instability is due less to descriptor corruption and more the difficulty in utilizing local information to canonically define the orientation (scale and rotation) at which a patch's descriptor should be computed. We address this issue by jointly estimating correspondence and relative patch orientation, within a hierarchical algorithm that utilizes a smoothly varying parameterization of geometric transformations. By collectively estimating the correspondence and orientation of all the features, we can align and orient features that cannot be stably matched with only local information. At the price of smoothing over motion discontinuities (due to independent motion or parallax), this approach can align image pairs that display significant inter-image appearance variations.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2012.6247651</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012, p.1-8 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_6247651 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Equations Frequency modulation Image color analysis Imaging Lighting Robustness Vectors |
title | Aligning images in the wild |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Aligning%20images%20in%20the%20wild&rft.btitle=2012%20IEEE%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Wen-Yan%20Lin&rft.date=2012-06&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1063-6919&rft.isbn=9781467312264&rft.isbn_list=1467312266&rft_id=info:doi/10.1109/CVPR.2012.6247651&rft_dat=%3Cieee_6IE%3E6247651%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312282&rft.eisbn_list=1467312274&rft.eisbn_list=9781467312271&rft.eisbn_list=9781467312288&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247651&rfr_iscdi=true |