The Asymptotic Distribution of Maxima of Independent and Identically Distributed Sums of Correlated or Non-Identical Gamma Random Variables and its Applications

In this paper, we show that the asymptotic probability density function (pdf) of the maxima of n independent and identically distributed (i.i.d.) sums of independent non-identically (i.n.i.d.) distributed gamma random variables (RVs) is a Gumbel pdf using Extreme Value Theory (EVT). We will also sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on communications 2012-09, Vol.60 (9), p.2747-2758
Hauptverfasser: Kalyani, S., Karthik, R. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2758
container_issue 9
container_start_page 2747
container_title IEEE transactions on communications
container_volume 60
creator Kalyani, S.
Karthik, R. M.
description In this paper, we show that the asymptotic probability density function (pdf) of the maxima of n independent and identically distributed (i.i.d.) sums of independent non-identically (i.n.i.d.) distributed gamma random variables (RVs) is a Gumbel pdf using Extreme Value Theory (EVT). We will also show that the asymptotic pdf of the maxima of n i.i.d. sums of correlated gamma RVs is a Gumbel pdf. Some applications in wireless communication are discussed where the maxima of n i.i.d. sums of correlated gamma RVs and maxima of n i.i.d. sums of i.n.i.d. gamma RVs arise. We discuss the utility of our results in the context of these applications.
doi_str_mv 10.1109/TCOMM.2012.071912.110311
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6247438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6247438</ieee_id><sourcerecordid>26403940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-b1d13716d7eb7e9c3f6bbe792408034db33cacf09480ba1897fe4cfa1cb42d413</originalsourceid><addsrcrecordid>eNpFkE1OwzAQhS0EEqVwAjbesEwZx24cL6sApVJLJShsI9txhFH-ZKcSvQ1HxWlQWdgzGr_35PkQwgRmhIC432XbzWYWA4lnwIkIJYwpIWdoQubzNIJ0zs_RBEBAlHCeXqIr778AgAGlE_Sz-zR44Q9117e91fjB-t5Zte9t2-C2xBv5bWs5dKumMJ0JV9Nj2RR4NXRWy6o6_LtMgd_2tR_0WeucqeQwah1-aZvo5MBLWYfQ1xDT1vhDOitVZfwx1vYeL7quCrrhD_4aXZSy8ubmr07R-9PjLnuO1tvlKlusI01B9JEiBaGcJAU3ihuhaZkoZbiIGaRAWaEo1VKXIFgKSpJU8NIwXUqiFYsLRugUpWOudq33zpR558Lm7pATyAfS-ZF0PpDOR9L5SDpY70ZrJ33YrnSy0daf_HESUItwpuh21FljzOk5iRlnNKW_UJGLbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Asymptotic Distribution of Maxima of Independent and Identically Distributed Sums of Correlated or Non-Identical Gamma Random Variables and its Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Kalyani, S. ; Karthik, R. M.</creator><creatorcontrib>Kalyani, S. ; Karthik, R. M.</creatorcontrib><description>In this paper, we show that the asymptotic probability density function (pdf) of the maxima of n independent and identically distributed (i.i.d.) sums of independent non-identically (i.n.i.d.) distributed gamma random variables (RVs) is a Gumbel pdf using Extreme Value Theory (EVT). We will also show that the asymptotic pdf of the maxima of n i.i.d. sums of correlated gamma RVs is a Gumbel pdf. Some applications in wireless communication are discussed where the maxima of n i.i.d. sums of correlated gamma RVs and maxima of n i.i.d. sums of i.n.i.d. gamma RVs arise. We discuss the utility of our results in the context of these applications.</description><identifier>ISSN: 0090-6778</identifier><identifier>EISSN: 1558-0857</identifier><identifier>DOI: 10.1109/TCOMM.2012.071912.110311</identifier><identifier>CODEN: IECMBT</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Confluent Lauricella functions ; Exact sciences and technology ; extreme value theory ; Gumbel distribution ; Multipath channels ; OFDM ; proportional fair scheduler ; Rayleigh channels ; Shape ; Signal to noise ratio ; Systems, networks and services of telecommunications ; Telecommunications ; Telecommunications and information theory ; Teletraffic ; Wireless communication</subject><ispartof>IEEE transactions on communications, 2012-09, Vol.60 (9), p.2747-2758</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-b1d13716d7eb7e9c3f6bbe792408034db33cacf09480ba1897fe4cfa1cb42d413</citedby><cites>FETCH-LOGICAL-c309t-b1d13716d7eb7e9c3f6bbe792408034db33cacf09480ba1897fe4cfa1cb42d413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6247438$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6247438$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26403940$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalyani, S.</creatorcontrib><creatorcontrib>Karthik, R. M.</creatorcontrib><title>The Asymptotic Distribution of Maxima of Independent and Identically Distributed Sums of Correlated or Non-Identical Gamma Random Variables and its Applications</title><title>IEEE transactions on communications</title><addtitle>TCOMM</addtitle><description>In this paper, we show that the asymptotic probability density function (pdf) of the maxima of n independent and identically distributed (i.i.d.) sums of independent non-identically (i.n.i.d.) distributed gamma random variables (RVs) is a Gumbel pdf using Extreme Value Theory (EVT). We will also show that the asymptotic pdf of the maxima of n i.i.d. sums of correlated gamma RVs is a Gumbel pdf. Some applications in wireless communication are discussed where the maxima of n i.i.d. sums of correlated gamma RVs and maxima of n i.i.d. sums of i.n.i.d. gamma RVs arise. We discuss the utility of our results in the context of these applications.</description><subject>Applied sciences</subject><subject>Confluent Lauricella functions</subject><subject>Exact sciences and technology</subject><subject>extreme value theory</subject><subject>Gumbel distribution</subject><subject>Multipath channels</subject><subject>OFDM</subject><subject>proportional fair scheduler</subject><subject>Rayleigh channels</subject><subject>Shape</subject><subject>Signal to noise ratio</subject><subject>Systems, networks and services of telecommunications</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Teletraffic</subject><subject>Wireless communication</subject><issn>0090-6778</issn><issn>1558-0857</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkE1OwzAQhS0EEqVwAjbesEwZx24cL6sApVJLJShsI9txhFH-ZKcSvQ1HxWlQWdgzGr_35PkQwgRmhIC432XbzWYWA4lnwIkIJYwpIWdoQubzNIJ0zs_RBEBAlHCeXqIr778AgAGlE_Sz-zR44Q9117e91fjB-t5Zte9t2-C2xBv5bWs5dKumMJ0JV9Nj2RR4NXRWy6o6_LtMgd_2tR_0WeucqeQwah1-aZvo5MBLWYfQ1xDT1vhDOitVZfwx1vYeL7quCrrhD_4aXZSy8ubmr07R-9PjLnuO1tvlKlusI01B9JEiBaGcJAU3ihuhaZkoZbiIGaRAWaEo1VKXIFgKSpJU8NIwXUqiFYsLRugUpWOudq33zpR558Lm7pATyAfS-ZF0PpDOR9L5SDpY70ZrJ33YrnSy0daf_HESUItwpuh21FljzOk5iRlnNKW_UJGLbw</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Kalyani, S.</creator><creator>Karthik, R. M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120901</creationdate><title>The Asymptotic Distribution of Maxima of Independent and Identically Distributed Sums of Correlated or Non-Identical Gamma Random Variables and its Applications</title><author>Kalyani, S. ; Karthik, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-b1d13716d7eb7e9c3f6bbe792408034db33cacf09480ba1897fe4cfa1cb42d413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Confluent Lauricella functions</topic><topic>Exact sciences and technology</topic><topic>extreme value theory</topic><topic>Gumbel distribution</topic><topic>Multipath channels</topic><topic>OFDM</topic><topic>proportional fair scheduler</topic><topic>Rayleigh channels</topic><topic>Shape</topic><topic>Signal to noise ratio</topic><topic>Systems, networks and services of telecommunications</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Teletraffic</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalyani, S.</creatorcontrib><creatorcontrib>Karthik, R. M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalyani, S.</au><au>Karthik, R. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Asymptotic Distribution of Maxima of Independent and Identically Distributed Sums of Correlated or Non-Identical Gamma Random Variables and its Applications</atitle><jtitle>IEEE transactions on communications</jtitle><stitle>TCOMM</stitle><date>2012-09-01</date><risdate>2012</risdate><volume>60</volume><issue>9</issue><spage>2747</spage><epage>2758</epage><pages>2747-2758</pages><issn>0090-6778</issn><eissn>1558-0857</eissn><coden>IECMBT</coden><abstract>In this paper, we show that the asymptotic probability density function (pdf) of the maxima of n independent and identically distributed (i.i.d.) sums of independent non-identically (i.n.i.d.) distributed gamma random variables (RVs) is a Gumbel pdf using Extreme Value Theory (EVT). We will also show that the asymptotic pdf of the maxima of n i.i.d. sums of correlated gamma RVs is a Gumbel pdf. Some applications in wireless communication are discussed where the maxima of n i.i.d. sums of correlated gamma RVs and maxima of n i.i.d. sums of i.n.i.d. gamma RVs arise. We discuss the utility of our results in the context of these applications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TCOMM.2012.071912.110311</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0090-6778
ispartof IEEE transactions on communications, 2012-09, Vol.60 (9), p.2747-2758
issn 0090-6778
1558-0857
language eng
recordid cdi_ieee_primary_6247438
source IEEE Electronic Library (IEL)
subjects Applied sciences
Confluent Lauricella functions
Exact sciences and technology
extreme value theory
Gumbel distribution
Multipath channels
OFDM
proportional fair scheduler
Rayleigh channels
Shape
Signal to noise ratio
Systems, networks and services of telecommunications
Telecommunications
Telecommunications and information theory
Teletraffic
Wireless communication
title The Asymptotic Distribution of Maxima of Independent and Identically Distributed Sums of Correlated or Non-Identical Gamma Random Variables and its Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A18%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Asymptotic%20Distribution%20of%20Maxima%20of%20Independent%20and%20Identically%20Distributed%20Sums%20of%20Correlated%20or%20Non-Identical%20Gamma%20Random%20Variables%20and%20its%20Applications&rft.jtitle=IEEE%20transactions%20on%20communications&rft.au=Kalyani,%20S.&rft.date=2012-09-01&rft.volume=60&rft.issue=9&rft.spage=2747&rft.epage=2758&rft.pages=2747-2758&rft.issn=0090-6778&rft.eissn=1558-0857&rft.coden=IECMBT&rft_id=info:doi/10.1109/TCOMM.2012.071912.110311&rft_dat=%3Cpascalfrancis_RIE%3E26403940%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6247438&rfr_iscdi=true