Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation
This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2012-11, Vol.61 (11), p.2993-3002 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3002 |
---|---|
container_issue | 11 |
container_start_page | 2993 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 61 |
creator | Agili, Sedig S. Morales, A. W. Li, J. Resso, M. |
description | This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique. |
doi_str_mv | 10.1109/TIM.2012.2202165 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6246705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6246705</ieee_id><sourcerecordid>10_1109_TIM_2012_2202165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSZ2ewmPUq1tdBiofUcN8muXUkT2d0e-vYmtHiagZnv_-Fj7BFhggjT591yPSFAmhABoZJXbIRSZslUKbpmIwDMk2kq1S27C-EHADKVZiP2NXdt7dpvHveGb3xX6tI1Lp74qwvRu_IYXdfy-bGthiXwzvItTzba64OJxgeu25rv9sZ5vu7aaPhM-6bjW3c4NnpA7tmN1U0wD5c5Zp_zt93sPVl9LJazl1VSkRIxwdJKEDKTSkmsrc2RUlMZmapMKARNpGwu6qo_VNqS0KiVqHMQSNamJYkxg3Nu5bsQvLHFr3cH7U8FQjEYKnpDxWCouBjqkacz4owx_--K-k6Q4g_812JF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Agili, Sedig S. ; Morales, A. W. ; Li, J. ; Resso, M.</creator><creatorcontrib>Agili, Sedig S. ; Morales, A. W. ; Li, J. ; Resso, M.</creatorcontrib><description>This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2202165</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Frequency measurement ; Frequency-domain measurements ; Measurement uncertainty ; Monte Carlo method ; Monte Carlo methods ; Probability distribution ; probability distribution function (PDF) ; random errors ; Random variables ; Uncertainty ; vector network analyzer (VNA)</subject><ispartof>IEEE transactions on instrumentation and measurement, 2012-11, Vol.61 (11), p.2993-3002</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</citedby><cites>FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6246705$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6246705$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agili, Sedig S.</creatorcontrib><creatorcontrib>Morales, A. W.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Resso, M.</creatorcontrib><title>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique.</description><subject>Calibration</subject><subject>Frequency measurement</subject><subject>Frequency-domain measurements</subject><subject>Measurement uncertainty</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Probability distribution</subject><subject>probability distribution function (PDF)</subject><subject>random errors</subject><subject>Random variables</subject><subject>Uncertainty</subject><subject>vector network analyzer (VNA)</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSZ2ewmPUq1tdBiofUcN8muXUkT2d0e-vYmtHiagZnv_-Fj7BFhggjT591yPSFAmhABoZJXbIRSZslUKbpmIwDMk2kq1S27C-EHADKVZiP2NXdt7dpvHveGb3xX6tI1Lp74qwvRu_IYXdfy-bGthiXwzvItTzba64OJxgeu25rv9sZ5vu7aaPhM-6bjW3c4NnpA7tmN1U0wD5c5Zp_zt93sPVl9LJazl1VSkRIxwdJKEDKTSkmsrc2RUlMZmapMKARNpGwu6qo_VNqS0KiVqHMQSNamJYkxg3Nu5bsQvLHFr3cH7U8FQjEYKnpDxWCouBjqkacz4owx_--K-k6Q4g_812JF</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Agili, Sedig S.</creator><creator>Morales, A. W.</creator><creator>Li, J.</creator><creator>Resso, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</title><author>Agili, Sedig S. ; Morales, A. W. ; Li, J. ; Resso, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Calibration</topic><topic>Frequency measurement</topic><topic>Frequency-domain measurements</topic><topic>Measurement uncertainty</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Probability distribution</topic><topic>probability distribution function (PDF)</topic><topic>random errors</topic><topic>Random variables</topic><topic>Uncertainty</topic><topic>vector network analyzer (VNA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agili, Sedig S.</creatorcontrib><creatorcontrib>Morales, A. W.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Resso, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agili, Sedig S.</au><au>Morales, A. W.</au><au>Li, J.</au><au>Resso, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>61</volume><issue>11</issue><spage>2993</spage><epage>3002</epage><pages>2993-3002</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2012.2202165</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2012-11, Vol.61 (11), p.2993-3002 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_ieee_primary_6246705 |
source | IEEE Electronic Library (IEL) |
subjects | Calibration Frequency measurement Frequency-domain measurements Measurement uncertainty Monte Carlo method Monte Carlo methods Probability distribution probability distribution function (PDF) random errors Random variables Uncertainty vector network analyzer (VNA) |
title | Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20the%20Probability%20Distribution%20Functions%20of%20S%20-Parameters%20and%20Their%20Monte%20Carlo%20Simulation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Agili,%20Sedig%20S.&rft.date=2012-11-01&rft.volume=61&rft.issue=11&rft.spage=2993&rft.epage=3002&rft.pages=2993-3002&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2202165&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2012_2202165%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6246705&rfr_iscdi=true |