Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation

This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2012-11, Vol.61 (11), p.2993-3002
Hauptverfasser: Agili, Sedig S., Morales, A. W., Li, J., Resso, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3002
container_issue 11
container_start_page 2993
container_title IEEE transactions on instrumentation and measurement
container_volume 61
creator Agili, Sedig S.
Morales, A. W.
Li, J.
Resso, M.
description This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique.
doi_str_mv 10.1109/TIM.2012.2202165
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6246705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6246705</ieee_id><sourcerecordid>10_1109_TIM_2012_2202165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</originalsourceid><addsrcrecordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSZ2ewmPUq1tdBiofUcN8muXUkT2d0e-vYmtHiagZnv_-Fj7BFhggjT591yPSFAmhABoZJXbIRSZslUKbpmIwDMk2kq1S27C-EHADKVZiP2NXdt7dpvHveGb3xX6tI1Lp74qwvRu_IYXdfy-bGthiXwzvItTzba64OJxgeu25rv9sZ5vu7aaPhM-6bjW3c4NnpA7tmN1U0wD5c5Zp_zt93sPVl9LJazl1VSkRIxwdJKEDKTSkmsrc2RUlMZmapMKARNpGwu6qo_VNqS0KiVqHMQSNamJYkxg3Nu5bsQvLHFr3cH7U8FQjEYKnpDxWCouBjqkacz4owx_--K-k6Q4g_812JF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</title><source>IEEE Electronic Library (IEL)</source><creator>Agili, Sedig S. ; Morales, A. W. ; Li, J. ; Resso, M.</creator><creatorcontrib>Agili, Sedig S. ; Morales, A. W. ; Li, J. ; Resso, M.</creatorcontrib><description>This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2012.2202165</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>IEEE</publisher><subject>Calibration ; Frequency measurement ; Frequency-domain measurements ; Measurement uncertainty ; Monte Carlo method ; Monte Carlo methods ; Probability distribution ; probability distribution function (PDF) ; random errors ; Random variables ; Uncertainty ; vector network analyzer (VNA)</subject><ispartof>IEEE transactions on instrumentation and measurement, 2012-11, Vol.61 (11), p.2993-3002</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</citedby><cites>FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6246705$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6246705$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Agili, Sedig S.</creatorcontrib><creatorcontrib>Morales, A. W.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Resso, M.</creatorcontrib><title>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique.</description><subject>Calibration</subject><subject>Frequency measurement</subject><subject>Frequency-domain measurements</subject><subject>Measurement uncertainty</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Probability distribution</subject><subject>probability distribution function (PDF)</subject><subject>random errors</subject><subject>Random variables</subject><subject>Uncertainty</subject><subject>vector network analyzer (VNA)</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKw0AQhhdRsFbvgpd9gdSZ2ewmPUq1tdBiofUcN8muXUkT2d0e-vYmtHiagZnv_-Fj7BFhggjT591yPSFAmhABoZJXbIRSZslUKbpmIwDMk2kq1S27C-EHADKVZiP2NXdt7dpvHveGb3xX6tI1Lp74qwvRu_IYXdfy-bGthiXwzvItTzba64OJxgeu25rv9sZ5vu7aaPhM-6bjW3c4NnpA7tmN1U0wD5c5Zp_zt93sPVl9LJazl1VSkRIxwdJKEDKTSkmsrc2RUlMZmapMKARNpGwu6qo_VNqS0KiVqHMQSNamJYkxg3Nu5bsQvLHFr3cH7U8FQjEYKnpDxWCouBjqkacz4owx_--K-k6Q4g_812JF</recordid><startdate>20121101</startdate><enddate>20121101</enddate><creator>Agili, Sedig S.</creator><creator>Morales, A. W.</creator><creator>Li, J.</creator><creator>Resso, M.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20121101</creationdate><title>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</title><author>Agili, Sedig S. ; Morales, A. W. ; Li, J. ; Resso, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-1bf5035756651dff8124ece54673610a226f83dcf81caf23a1a63d80312ff4b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Calibration</topic><topic>Frequency measurement</topic><topic>Frequency-domain measurements</topic><topic>Measurement uncertainty</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Probability distribution</topic><topic>probability distribution function (PDF)</topic><topic>random errors</topic><topic>Random variables</topic><topic>Uncertainty</topic><topic>vector network analyzer (VNA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agili, Sedig S.</creatorcontrib><creatorcontrib>Morales, A. W.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Resso, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Agili, Sedig S.</au><au>Morales, A. W.</au><au>Li, J.</au><au>Resso, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2012-11-01</date><risdate>2012</risdate><volume>61</volume><issue>11</issue><spage>2993</spage><epage>3002</epage><pages>2993-3002</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>This paper presents the probability distribution function (PDF) of the ratio of two random waves. This result is used to obtain the PDF of S -parameters random errors in magnitude (in decibels) and phase, which are the quantities that most engineers work with. These results are further used on the development of a Monte Carlo simulation method in order to predict the variability of frequency-domain measurements. Experiments are performed to identify and characterize frequency-domain random errors, such as instrument noise, connector repeatability, and calibration variations, in measurement systems. By comparing with real measurement data, it is shown that random-error effects can be accurately estimated by the PDF's obtained and the Monte Carlo technique.</abstract><pub>IEEE</pub><doi>10.1109/TIM.2012.2202165</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2012-11, Vol.61 (11), p.2993-3002
issn 0018-9456
1557-9662
language eng
recordid cdi_ieee_primary_6246705
source IEEE Electronic Library (IEL)
subjects Calibration
Frequency measurement
Frequency-domain measurements
Measurement uncertainty
Monte Carlo method
Monte Carlo methods
Probability distribution
probability distribution function (PDF)
random errors
Random variables
Uncertainty
vector network analyzer (VNA)
title Finding the Probability Distribution Functions of S -Parameters and Their Monte Carlo Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20the%20Probability%20Distribution%20Functions%20of%20S%20-Parameters%20and%20Their%20Monte%20Carlo%20Simulation&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Agili,%20Sedig%20S.&rft.date=2012-11-01&rft.volume=61&rft.issue=11&rft.spage=2993&rft.epage=3002&rft.pages=2993-3002&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2012.2202165&rft_dat=%3Ccrossref_RIE%3E10_1109_TIM_2012_2202165%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6246705&rfr_iscdi=true