Fault diagnosis for gear pump based on feature fusion of vibration signal

Information fusion arises in a surprising number of fault diagnosis applications. In this paper, common faults are designed in the experiment according to the gear pump vibration mechanism. Fault signal is collected from vibration sensors of different positions, and wavelet packet energy percentage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiliang Liu, Guiming Chen, Fangxi Li, Qian Zhang, Zhenqi Dong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 712
container_issue
container_start_page 709
container_title
container_volume
creator Xiliang Liu
Guiming Chen
Fangxi Li
Qian Zhang
Zhenqi Dong
description Information fusion arises in a surprising number of fault diagnosis applications. In this paper, common faults are designed in the experiment according to the gear pump vibration mechanism. Fault signal is collected from vibration sensors of different positions, and wavelet packet energy percentage and RMS are extracted as features of the signal. RBF neural network is adopted to fuse thiese features which are used to learn and train the network. The testing results prove that this approach possesses higher diagnostic precision and better diagnostic effect than single signal fault diagnosis.
doi_str_mv 10.1109/ICQR2MSE.2012.6246328
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6246328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6246328</ieee_id><sourcerecordid>6246328</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d6ee655f3e6c7d0737d0fb0191584a9a9b5696143188396b954b92815c4790e33</originalsourceid><addsrcrecordid>eNpVkM1KxDAcxCMiKGufQIS8QNf8852jlF0trIhf5yXZJiXSbUvSCr69FffiHGb4zWEOg9AtkDUAMXd19fJKn942a0qAriXlklF9hgqjNHCpGFFawfk_lvwSFTl_kkVLSzm5QvXWzt2Em2jbfsgx4zAk3Hqb8DgfR-xs9g0eehy8nebkcZhzXHAI-Cu6ZKdfyLHtbXeNLoLtsi9OuUIf28179Vjunh_q6n5XRlBiKhvpvRQiMC8PqiGKLRYcAQNCc2uscUIaCZyB1sxIZwR3hmoQB64M8Yyt0M3fbvTe78cUjzZ9708HsB-Un043</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault diagnosis for gear pump based on feature fusion of vibration signal</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiliang Liu ; Guiming Chen ; Fangxi Li ; Qian Zhang ; Zhenqi Dong</creator><creatorcontrib>Xiliang Liu ; Guiming Chen ; Fangxi Li ; Qian Zhang ; Zhenqi Dong</creatorcontrib><description>Information fusion arises in a surprising number of fault diagnosis applications. In this paper, common faults are designed in the experiment according to the gear pump vibration mechanism. Fault signal is collected from vibration sensors of different positions, and wavelet packet energy percentage and RMS are extracted as features of the signal. RBF neural network is adopted to fuse thiese features which are used to learn and train the network. The testing results prove that this approach possesses higher diagnostic precision and better diagnostic effect than single signal fault diagnosis.</description><identifier>ISBN: 9781467307864</identifier><identifier>ISBN: 1467307866</identifier><identifier>EISBN: 9781467307871</identifier><identifier>EISBN: 9781467307888</identifier><identifier>EISBN: 1467307882</identifier><identifier>EISBN: 1467307874</identifier><identifier>DOI: 10.1109/ICQR2MSE.2012.6246328</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fault diagnosis ; feature fusion ; Gears ; neural network ; Neural networks ; Pumps ; Testing ; Vibrations ; wavelet packet energy percentage ; Wavelet packets</subject><ispartof>2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2012, p.709-712</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6246328$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6246328$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiliang Liu</creatorcontrib><creatorcontrib>Guiming Chen</creatorcontrib><creatorcontrib>Fangxi Li</creatorcontrib><creatorcontrib>Qian Zhang</creatorcontrib><creatorcontrib>Zhenqi Dong</creatorcontrib><title>Fault diagnosis for gear pump based on feature fusion of vibration signal</title><title>2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering</title><addtitle>ICQR2MSE</addtitle><description>Information fusion arises in a surprising number of fault diagnosis applications. In this paper, common faults are designed in the experiment according to the gear pump vibration mechanism. Fault signal is collected from vibration sensors of different positions, and wavelet packet energy percentage and RMS are extracted as features of the signal. RBF neural network is adopted to fuse thiese features which are used to learn and train the network. The testing results prove that this approach possesses higher diagnostic precision and better diagnostic effect than single signal fault diagnosis.</description><subject>Fault diagnosis</subject><subject>feature fusion</subject><subject>Gears</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Pumps</subject><subject>Testing</subject><subject>Vibrations</subject><subject>wavelet packet energy percentage</subject><subject>Wavelet packets</subject><isbn>9781467307864</isbn><isbn>1467307866</isbn><isbn>9781467307871</isbn><isbn>9781467307888</isbn><isbn>1467307882</isbn><isbn>1467307874</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KxDAcxCMiKGufQIS8QNf8852jlF0trIhf5yXZJiXSbUvSCr69FffiHGb4zWEOg9AtkDUAMXd19fJKn942a0qAriXlklF9hgqjNHCpGFFawfk_lvwSFTl_kkVLSzm5QvXWzt2Em2jbfsgx4zAk3Hqb8DgfR-xs9g0eehy8nebkcZhzXHAI-Cu6ZKdfyLHtbXeNLoLtsi9OuUIf28179Vjunh_q6n5XRlBiKhvpvRQiMC8PqiGKLRYcAQNCc2uscUIaCZyB1sxIZwR3hmoQB64M8Yyt0M3fbvTe78cUjzZ9708HsB-Un043</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Xiliang Liu</creator><creator>Guiming Chen</creator><creator>Fangxi Li</creator><creator>Qian Zhang</creator><creator>Zhenqi Dong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Fault diagnosis for gear pump based on feature fusion of vibration signal</title><author>Xiliang Liu ; Guiming Chen ; Fangxi Li ; Qian Zhang ; Zhenqi Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d6ee655f3e6c7d0737d0fb0191584a9a9b5696143188396b954b92815c4790e33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Fault diagnosis</topic><topic>feature fusion</topic><topic>Gears</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Pumps</topic><topic>Testing</topic><topic>Vibrations</topic><topic>wavelet packet energy percentage</topic><topic>Wavelet packets</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiliang Liu</creatorcontrib><creatorcontrib>Guiming Chen</creatorcontrib><creatorcontrib>Fangxi Li</creatorcontrib><creatorcontrib>Qian Zhang</creatorcontrib><creatorcontrib>Zhenqi Dong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiliang Liu</au><au>Guiming Chen</au><au>Fangxi Li</au><au>Qian Zhang</au><au>Zhenqi Dong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault diagnosis for gear pump based on feature fusion of vibration signal</atitle><btitle>2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering</btitle><stitle>ICQR2MSE</stitle><date>2012-06</date><risdate>2012</risdate><spage>709</spage><epage>712</epage><pages>709-712</pages><isbn>9781467307864</isbn><isbn>1467307866</isbn><eisbn>9781467307871</eisbn><eisbn>9781467307888</eisbn><eisbn>1467307882</eisbn><eisbn>1467307874</eisbn><abstract>Information fusion arises in a surprising number of fault diagnosis applications. In this paper, common faults are designed in the experiment according to the gear pump vibration mechanism. Fault signal is collected from vibration sensors of different positions, and wavelet packet energy percentage and RMS are extracted as features of the signal. RBF neural network is adopted to fuse thiese features which are used to learn and train the network. The testing results prove that this approach possesses higher diagnostic precision and better diagnostic effect than single signal fault diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/ICQR2MSE.2012.6246328</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467307864
ispartof 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2012, p.709-712
issn
language eng
recordid cdi_ieee_primary_6246328
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fault diagnosis
feature fusion
Gears
neural network
Neural networks
Pumps
Testing
Vibrations
wavelet packet energy percentage
Wavelet packets
title Fault diagnosis for gear pump based on feature fusion of vibration signal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A40%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20diagnosis%20for%20gear%20pump%20based%20on%20feature%20fusion%20of%20vibration%20signal&rft.btitle=2012%20International%20Conference%20on%20Quality,%20Reliability,%20Risk,%20Maintenance,%20and%20Safety%20Engineering&rft.au=Xiliang%20Liu&rft.date=2012-06&rft.spage=709&rft.epage=712&rft.pages=709-712&rft.isbn=9781467307864&rft.isbn_list=1467307866&rft_id=info:doi/10.1109/ICQR2MSE.2012.6246328&rft_dat=%3Cieee_6IE%3E6246328%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467307871&rft.eisbn_list=9781467307888&rft.eisbn_list=1467307882&rft.eisbn_list=1467307874&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6246328&rfr_iscdi=true