Approaching optimal compression with fast update for large scale routing tables
With the fast development of Internet, the size of routing tables in the backbone routers keeps a rapid growth in recent years. An effective solution to control the memory occupation of the ever-increased huge routing table is the Forwarding Information Base (FIB) compression. Existing optimal FIB c...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Tong Yang Bo Yuan Shenjiang Zhang Ting Zhang Ruian Duan Yi Wang Bin Liu |
description | With the fast development of Internet, the size of routing tables in the backbone routers keeps a rapid growth in recent years. An effective solution to control the memory occupation of the ever-increased huge routing table is the Forwarding Information Base (FIB) compression. Existing optimal FIB compression algorithm ORTC suffers from high computational complexity and poor update performance, due to the loss of essential structure information during its compression process. To address this problem, we present two suboptimal FIB compression algorithms - EAR-fast and EAR-slow, respectively, based on our proposed Election and Representative (EAR) algorithm which is an optimal FIB compression algorithm. The two suboptimal algorithms preserve the structure information, and support fast incremental updates while reducing computational complexity. Experiments on an 18-month real data set show that compared with ORTC, the proposed EAR-fast algorithm requires only 9.8% compression time and 37.7% memory space, but supports faster update while prolonging the recompression interval remarkably. All these performance advantages come at a cost of merely a 1.5% loss in compression ratio compared with the theoretical optimal ratio. |
doi_str_mv | 10.1109/IWQoS.2012.6245978 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6245978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6245978</ieee_id><sourcerecordid>6245978</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-12b45921860931f938edb3745edd3124581ce8688f9d19657e65543a2689eb243</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhSMq2FZfQDd5gam5-ZtkWYrWQqGIBd2VzMydNjJthiRFfHtHLLg6nMX5-DiE3AObAjD7uHx_DW9TzoBPNZfKluaCjEHqUgC3Rlz-F11ekREoaQoN6uOGjFP6ZEyWTIgRWc_6PgZX7_1xR0Of_cF1tA6HPmJKPhzpl8972rqU6alvXEbahkg7F3dIU-06pDGc8u84u6rDdEuuW9clvDvnhGyenzbzl2K1Xizns1XhLcsF8GpQ5mA0swJaKww2lSilwqYZlKUyUKPRxrS2AatViVopKRzXxmLFpZiQhz-sR8RtHwft-L09HyF-AGFQUEY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Approaching optimal compression with fast update for large scale routing tables</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tong Yang ; Bo Yuan ; Shenjiang Zhang ; Ting Zhang ; Ruian Duan ; Yi Wang ; Bin Liu</creator><creatorcontrib>Tong Yang ; Bo Yuan ; Shenjiang Zhang ; Ting Zhang ; Ruian Duan ; Yi Wang ; Bin Liu</creatorcontrib><description>With the fast development of Internet, the size of routing tables in the backbone routers keeps a rapid growth in recent years. An effective solution to control the memory occupation of the ever-increased huge routing table is the Forwarding Information Base (FIB) compression. Existing optimal FIB compression algorithm ORTC suffers from high computational complexity and poor update performance, due to the loss of essential structure information during its compression process. To address this problem, we present two suboptimal FIB compression algorithms - EAR-fast and EAR-slow, respectively, based on our proposed Election and Representative (EAR) algorithm which is an optimal FIB compression algorithm. The two suboptimal algorithms preserve the structure information, and support fast incremental updates while reducing computational complexity. Experiments on an 18-month real data set show that compared with ORTC, the proposed EAR-fast algorithm requires only 9.8% compression time and 37.7% memory space, but supports faster update while prolonging the recompression interval remarkably. All these performance advantages come at a cost of merely a 1.5% loss in compression ratio compared with the theoretical optimal ratio.</description><identifier>ISSN: 1548-615X</identifier><identifier>ISBN: 1467312967</identifier><identifier>ISBN: 9781467312967</identifier><identifier>EISBN: 1467312983</identifier><identifier>EISBN: 9781467312974</identifier><identifier>EISBN: 1467312975</identifier><identifier>EISBN: 9781467312981</identifier><identifier>DOI: 10.1109/IWQoS.2012.6245978</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Complexity theory ; Compression algorithms ; Ear ; Nominations and elections ; Routing ; Solids</subject><ispartof>2012 IEEE 20th International Workshop on Quality of Service, 2012, p.1-9</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6245978$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6245978$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tong Yang</creatorcontrib><creatorcontrib>Bo Yuan</creatorcontrib><creatorcontrib>Shenjiang Zhang</creatorcontrib><creatorcontrib>Ting Zhang</creatorcontrib><creatorcontrib>Ruian Duan</creatorcontrib><creatorcontrib>Yi Wang</creatorcontrib><creatorcontrib>Bin Liu</creatorcontrib><title>Approaching optimal compression with fast update for large scale routing tables</title><title>2012 IEEE 20th International Workshop on Quality of Service</title><addtitle>IWQoS</addtitle><description>With the fast development of Internet, the size of routing tables in the backbone routers keeps a rapid growth in recent years. An effective solution to control the memory occupation of the ever-increased huge routing table is the Forwarding Information Base (FIB) compression. Existing optimal FIB compression algorithm ORTC suffers from high computational complexity and poor update performance, due to the loss of essential structure information during its compression process. To address this problem, we present two suboptimal FIB compression algorithms - EAR-fast and EAR-slow, respectively, based on our proposed Election and Representative (EAR) algorithm which is an optimal FIB compression algorithm. The two suboptimal algorithms preserve the structure information, and support fast incremental updates while reducing computational complexity. Experiments on an 18-month real data set show that compared with ORTC, the proposed EAR-fast algorithm requires only 9.8% compression time and 37.7% memory space, but supports faster update while prolonging the recompression interval remarkably. All these performance advantages come at a cost of merely a 1.5% loss in compression ratio compared with the theoretical optimal ratio.</description><subject>Algorithm design and analysis</subject><subject>Complexity theory</subject><subject>Compression algorithms</subject><subject>Ear</subject><subject>Nominations and elections</subject><subject>Routing</subject><subject>Solids</subject><issn>1548-615X</issn><isbn>1467312967</isbn><isbn>9781467312967</isbn><isbn>1467312983</isbn><isbn>9781467312974</isbn><isbn>1467312975</isbn><isbn>9781467312981</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1KAzEUhSMq2FZfQDd5gam5-ZtkWYrWQqGIBd2VzMydNjJthiRFfHtHLLg6nMX5-DiE3AObAjD7uHx_DW9TzoBPNZfKluaCjEHqUgC3Rlz-F11ekREoaQoN6uOGjFP6ZEyWTIgRWc_6PgZX7_1xR0Of_cF1tA6HPmJKPhzpl8972rqU6alvXEbahkg7F3dIU-06pDGc8u84u6rDdEuuW9clvDvnhGyenzbzl2K1Xizns1XhLcsF8GpQ5mA0swJaKww2lSilwqYZlKUyUKPRxrS2AatViVopKRzXxmLFpZiQhz-sR8RtHwft-L09HyF-AGFQUEY</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Tong Yang</creator><creator>Bo Yuan</creator><creator>Shenjiang Zhang</creator><creator>Ting Zhang</creator><creator>Ruian Duan</creator><creator>Yi Wang</creator><creator>Bin Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Approaching optimal compression with fast update for large scale routing tables</title><author>Tong Yang ; Bo Yuan ; Shenjiang Zhang ; Ting Zhang ; Ruian Duan ; Yi Wang ; Bin Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-12b45921860931f938edb3745edd3124581ce8688f9d19657e65543a2689eb243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Complexity theory</topic><topic>Compression algorithms</topic><topic>Ear</topic><topic>Nominations and elections</topic><topic>Routing</topic><topic>Solids</topic><toplevel>online_resources</toplevel><creatorcontrib>Tong Yang</creatorcontrib><creatorcontrib>Bo Yuan</creatorcontrib><creatorcontrib>Shenjiang Zhang</creatorcontrib><creatorcontrib>Ting Zhang</creatorcontrib><creatorcontrib>Ruian Duan</creatorcontrib><creatorcontrib>Yi Wang</creatorcontrib><creatorcontrib>Bin Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tong Yang</au><au>Bo Yuan</au><au>Shenjiang Zhang</au><au>Ting Zhang</au><au>Ruian Duan</au><au>Yi Wang</au><au>Bin Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Approaching optimal compression with fast update for large scale routing tables</atitle><btitle>2012 IEEE 20th International Workshop on Quality of Service</btitle><stitle>IWQoS</stitle><date>2012-06</date><risdate>2012</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1548-615X</issn><isbn>1467312967</isbn><isbn>9781467312967</isbn><eisbn>1467312983</eisbn><eisbn>9781467312974</eisbn><eisbn>1467312975</eisbn><eisbn>9781467312981</eisbn><abstract>With the fast development of Internet, the size of routing tables in the backbone routers keeps a rapid growth in recent years. An effective solution to control the memory occupation of the ever-increased huge routing table is the Forwarding Information Base (FIB) compression. Existing optimal FIB compression algorithm ORTC suffers from high computational complexity and poor update performance, due to the loss of essential structure information during its compression process. To address this problem, we present two suboptimal FIB compression algorithms - EAR-fast and EAR-slow, respectively, based on our proposed Election and Representative (EAR) algorithm which is an optimal FIB compression algorithm. The two suboptimal algorithms preserve the structure information, and support fast incremental updates while reducing computational complexity. Experiments on an 18-month real data set show that compared with ORTC, the proposed EAR-fast algorithm requires only 9.8% compression time and 37.7% memory space, but supports faster update while prolonging the recompression interval remarkably. All these performance advantages come at a cost of merely a 1.5% loss in compression ratio compared with the theoretical optimal ratio.</abstract><pub>IEEE</pub><doi>10.1109/IWQoS.2012.6245978</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-615X |
ispartof | 2012 IEEE 20th International Workshop on Quality of Service, 2012, p.1-9 |
issn | 1548-615X |
language | eng |
recordid | cdi_ieee_primary_6245978 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Complexity theory Compression algorithms Ear Nominations and elections Routing Solids |
title | Approaching optimal compression with fast update for large scale routing tables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A13%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Approaching%20optimal%20compression%20with%20fast%20update%20for%20large%20scale%20routing%20tables&rft.btitle=2012%20IEEE%2020th%20International%20Workshop%20on%20Quality%20of%20Service&rft.au=Tong%20Yang&rft.date=2012-06&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1548-615X&rft.isbn=1467312967&rft.isbn_list=9781467312967&rft_id=info:doi/10.1109/IWQoS.2012.6245978&rft_dat=%3Cieee_6IE%3E6245978%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467312983&rft.eisbn_list=9781467312974&rft.eisbn_list=1467312975&rft.eisbn_list=9781467312981&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6245978&rfr_iscdi=true |