A new fault detection and diagnosis approach for a distillation column based on a combined PCA and ANFIS scheme

In this paper, a new approach is introduced for fault detection and diagnostic. The method uses integration of PCA (Principal Component Analysis) and ANFIS (Adaptive Neuro -Fuzzy Inference System). PCA is employed to reduce the recorded data dimension and yet extract informative features for fault d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Karimi, I., Salahshoor, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3413
container_issue
container_start_page 3408
container_title
container_volume
creator Karimi, I.
Salahshoor, K.
description In this paper, a new approach is introduced for fault detection and diagnostic. The method uses integration of PCA (Principal Component Analysis) and ANFIS (Adaptive Neuro -Fuzzy Inference System). PCA is employed to reduce the recorded data dimension and yet extract informative features for fault detection purpose. The reduced data is then fed to ANFIS to discriminate the occurred fault. Resolution of the multiple ANFISs is enhanced through adequate selection of the utilized membership function (MF) numbers to compensate for the large number of possible created rules. This approach naturally removes extra pressure on each ANFIS to yield good responses only on close neighborhood of faulty data in training process. The combination of boundary models in the extra number of MFs provides fault isolation of the faulty plant section even when novel faults. The key point of this approach is the ability to detect and diagnose any novel fault with the same time-response pattern but different severities. The efficacy of the proposed FDD approach has been demonstrated via extensive conducted tests in a distillation column benchmark.
doi_str_mv 10.1109/CCDC.2012.6244542
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6244542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6244542</ieee_id><sourcerecordid>6244542</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6a7c46b4ff47a1bb96df4f18ed7006588d2af7fdb44bbe97e060cb2d9e6df7ae3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhM2fRFv6AIiLXyDFdhw7PkaBQqUKkIBztY7X1Cg_VRyEeHtCKZxWu9_MaLSEXHK24JyZ67K8KReCcbFQQspMiiMy5TLTWjAt8mMy4UbmiZFSn5C50fkfS-XpP0vNOZnG-M6YUiljE9IVtMVP6uGjHqjDAashdC2F1lEX4K3tYogUdru-g2pLfddTGEEcQl3DXll19UfTUgsRHf1xjpfGhnbcnspiH1Q8LFfPNFZbbPCCnHmoI84Pc0Zel7cv5X2yfrxblcU6CVxnQ6JAV1JZ6b3UwK01ynnpeY5Oj9WzPHcCvPbOSmktGo1MscoKZ3AUasB0Rq5-cwMibnZ9aKD_2hwel34DxrtegQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new fault detection and diagnosis approach for a distillation column based on a combined PCA and ANFIS scheme</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Karimi, I. ; Salahshoor, K.</creator><creatorcontrib>Karimi, I. ; Salahshoor, K.</creatorcontrib><description>In this paper, a new approach is introduced for fault detection and diagnostic. The method uses integration of PCA (Principal Component Analysis) and ANFIS (Adaptive Neuro -Fuzzy Inference System). PCA is employed to reduce the recorded data dimension and yet extract informative features for fault detection purpose. The reduced data is then fed to ANFIS to discriminate the occurred fault. Resolution of the multiple ANFISs is enhanced through adequate selection of the utilized membership function (MF) numbers to compensate for the large number of possible created rules. This approach naturally removes extra pressure on each ANFIS to yield good responses only on close neighborhood of faulty data in training process. The combination of boundary models in the extra number of MFs provides fault isolation of the faulty plant section even when novel faults. The key point of this approach is the ability to detect and diagnose any novel fault with the same time-response pattern but different severities. The efficacy of the proposed FDD approach has been demonstrated via extensive conducted tests in a distillation column benchmark.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 9781457720734</identifier><identifier>ISBN: 1457720736</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1457720728</identifier><identifier>EISBN: 1457720744</identifier><identifier>EISBN: 9781457720741</identifier><identifier>EISBN: 9781457720727</identifier><identifier>DOI: 10.1109/CCDC.2012.6244542</identifier><language>eng</language><publisher>IEEE</publisher><subject>ANFIS ; Covariance matrix ; Dimension Reduction ; Distillation Column ; Distillation equipment ; Equations ; Fault detection ; Fault Detection and Diagnosis ; Feeds ; PCA ; Principal component analysis ; Residual Analysis ; Training</subject><ispartof>2012 24th Chinese Control and Decision Conference (CCDC), 2012, p.3408-3413</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6244542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6244542$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karimi, I.</creatorcontrib><creatorcontrib>Salahshoor, K.</creatorcontrib><title>A new fault detection and diagnosis approach for a distillation column based on a combined PCA and ANFIS scheme</title><title>2012 24th Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>In this paper, a new approach is introduced for fault detection and diagnostic. The method uses integration of PCA (Principal Component Analysis) and ANFIS (Adaptive Neuro -Fuzzy Inference System). PCA is employed to reduce the recorded data dimension and yet extract informative features for fault detection purpose. The reduced data is then fed to ANFIS to discriminate the occurred fault. Resolution of the multiple ANFISs is enhanced through adequate selection of the utilized membership function (MF) numbers to compensate for the large number of possible created rules. This approach naturally removes extra pressure on each ANFIS to yield good responses only on close neighborhood of faulty data in training process. The combination of boundary models in the extra number of MFs provides fault isolation of the faulty plant section even when novel faults. The key point of this approach is the ability to detect and diagnose any novel fault with the same time-response pattern but different severities. The efficacy of the proposed FDD approach has been demonstrated via extensive conducted tests in a distillation column benchmark.</description><subject>ANFIS</subject><subject>Covariance matrix</subject><subject>Dimension Reduction</subject><subject>Distillation Column</subject><subject>Distillation equipment</subject><subject>Equations</subject><subject>Fault detection</subject><subject>Fault Detection and Diagnosis</subject><subject>Feeds</subject><subject>PCA</subject><subject>Principal component analysis</subject><subject>Residual Analysis</subject><subject>Training</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>9781457720734</isbn><isbn>1457720736</isbn><isbn>1457720728</isbn><isbn>1457720744</isbn><isbn>9781457720741</isbn><isbn>9781457720727</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhM2fRFv6AIiLXyDFdhw7PkaBQqUKkIBztY7X1Cg_VRyEeHtCKZxWu9_MaLSEXHK24JyZ67K8KReCcbFQQspMiiMy5TLTWjAt8mMy4UbmiZFSn5C50fkfS-XpP0vNOZnG-M6YUiljE9IVtMVP6uGjHqjDAashdC2F1lEX4K3tYogUdru-g2pLfddTGEEcQl3DXll19UfTUgsRHf1xjpfGhnbcnspiH1Q8LFfPNFZbbPCCnHmoI84Pc0Zel7cv5X2yfrxblcU6CVxnQ6JAV1JZ6b3UwK01ynnpeY5Oj9WzPHcCvPbOSmktGo1MscoKZ3AUasB0Rq5-cwMibnZ9aKD_2hwel34DxrtegQ</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Karimi, I.</creator><creator>Salahshoor, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>A new fault detection and diagnosis approach for a distillation column based on a combined PCA and ANFIS scheme</title><author>Karimi, I. ; Salahshoor, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6a7c46b4ff47a1bb96df4f18ed7006588d2af7fdb44bbe97e060cb2d9e6df7ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ANFIS</topic><topic>Covariance matrix</topic><topic>Dimension Reduction</topic><topic>Distillation Column</topic><topic>Distillation equipment</topic><topic>Equations</topic><topic>Fault detection</topic><topic>Fault Detection and Diagnosis</topic><topic>Feeds</topic><topic>PCA</topic><topic>Principal component analysis</topic><topic>Residual Analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Karimi, I.</creatorcontrib><creatorcontrib>Salahshoor, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karimi, I.</au><au>Salahshoor, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new fault detection and diagnosis approach for a distillation column based on a combined PCA and ANFIS scheme</atitle><btitle>2012 24th Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2012-05</date><risdate>2012</risdate><spage>3408</spage><epage>3413</epage><pages>3408-3413</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>9781457720734</isbn><isbn>1457720736</isbn><eisbn>1457720728</eisbn><eisbn>1457720744</eisbn><eisbn>9781457720741</eisbn><eisbn>9781457720727</eisbn><abstract>In this paper, a new approach is introduced for fault detection and diagnostic. The method uses integration of PCA (Principal Component Analysis) and ANFIS (Adaptive Neuro -Fuzzy Inference System). PCA is employed to reduce the recorded data dimension and yet extract informative features for fault detection purpose. The reduced data is then fed to ANFIS to discriminate the occurred fault. Resolution of the multiple ANFISs is enhanced through adequate selection of the utilized membership function (MF) numbers to compensate for the large number of possible created rules. This approach naturally removes extra pressure on each ANFIS to yield good responses only on close neighborhood of faulty data in training process. The combination of boundary models in the extra number of MFs provides fault isolation of the faulty plant section even when novel faults. The key point of this approach is the ability to detect and diagnose any novel fault with the same time-response pattern but different severities. The efficacy of the proposed FDD approach has been demonstrated via extensive conducted tests in a distillation column benchmark.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2012.6244542</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2012 24th Chinese Control and Decision Conference (CCDC), 2012, p.3408-3413
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_6244542
source IEEE Electronic Library (IEL) Conference Proceedings
subjects ANFIS
Covariance matrix
Dimension Reduction
Distillation Column
Distillation equipment
Equations
Fault detection
Fault Detection and Diagnosis
Feeds
PCA
Principal component analysis
Residual Analysis
Training
title A new fault detection and diagnosis approach for a distillation column based on a combined PCA and ANFIS scheme
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A44%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20fault%20detection%20and%20diagnosis%20approach%20for%20a%20distillation%20column%20based%20on%20a%20combined%20PCA%20and%20ANFIS%20scheme&rft.btitle=2012%2024th%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Karimi,%20I.&rft.date=2012-05&rft.spage=3408&rft.epage=3413&rft.pages=3408-3413&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=9781457720734&rft.isbn_list=1457720736&rft_id=info:doi/10.1109/CCDC.2012.6244542&rft_dat=%3Cieee_6IE%3E6244542%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457720728&rft.eisbn_list=1457720744&rft.eisbn_list=9781457720741&rft.eisbn_list=9781457720727&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6244542&rfr_iscdi=true