A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide

The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Johnson, W. L., Wallis, T. M., Kabos, P., Rocas, E., Collado, C., Liew, L., Ha, J.-Y, Davydov, A. V., Plankis, A., Heyliger, P. R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Johnson, W. L.
Wallis, T. M.
Kabos, P.
Rocas, E.
Collado, C.
Liew, L.
Ha, J.-Y
Davydov, A. V.
Plankis, A.
Heyliger, P. R.
description The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.
doi_str_mv 10.1109/FCS.2012.6243722
format Conference Proceeding
fullrecord <record><control><sourceid>csuc_6IE</sourceid><recordid>TN_cdi_ieee_primary_6243722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6243722</ieee_id><sourcerecordid>oai_recercat_cat_2072_338687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-f6544cb846ff25e66e8fa95c868feb8b6d43a88fb3f45841f7593dfcbf950c7f3</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhCMqWGvvgpf8ga353GSPpbQqtHionpds9k0b3W5Ksqv037vSQgeGYQ7zHAahR0qmlJLieTnfTBmhbJozwRVjV-ieCqkU1YyQ60uhxQ0aMc5URgsq7tAkpS8ySGlKJR0hN8PdztvvFlLK0g5MxOvFeoMjpNCaLkQM-0MTjr7dYmjAdjHswe5M661pcBdNm-redj60AyeGfrvDBttwaEw7oH7ND2x7X8MDunWmSTA55xh9Lhcf89ds9f7yNp-tMks56zKXSyFspUXuHJOQ56CdKaTVuXZQ6SqvBTdau4o7IbWgTsmC185WrpDEKsfHiJ64NvW2jGAhWtOVwfhL-TcjipWcD1w1bJ5OGw8A5SH6vYnH8vwr_wMqEWvv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Johnson, W. L. ; Wallis, T. M. ; Kabos, P. ; Rocas, E. ; Collado, C. ; Liew, L. ; Ha, J.-Y ; Davydov, A. V. ; Plankis, A. ; Heyliger, P. R.</creator><creatorcontrib>Johnson, W. L. ; Wallis, T. M. ; Kabos, P. ; Rocas, E. ; Collado, C. ; Liew, L. ; Ha, J.-Y ; Davydov, A. V. ; Plankis, A. ; Heyliger, P. R.</creatorcontrib><description>The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.</description><identifier>ISSN: 2327-1914</identifier><identifier>ISBN: 1457718219</identifier><identifier>ISBN: 9781457718212</identifier><identifier>ISBN: 9781457718199</identifier><identifier>ISBN: 1457718197</identifier><identifier>EISBN: 1457718200</identifier><identifier>EISBN: 9781457718199</identifier><identifier>EISBN: 9781457718205</identifier><identifier>EISBN: 1457718197</identifier><identifier>DOI: 10.1109/FCS.2012.6243722</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic power ; Acoustic resonance ; Acoustics ; Bridge circuits ; Bridges ; Charge carrier processes ; Coplanar waveguides ; Electromechanical transduction ; Fabricated device ; Finite-element ; Gold ; High damping ; MEMS resonators ; Microelectromechanical systems ; Noise levels ; Non-Linearity ; Nulling ; Orders of magnitude ; Out-of-plane displacement ; Reference lines ; Shear displacement ; Silicon ; Silicon-bridge ; Sistemes microelectromecànics ; SOI wafers ; Swept-frequency ; Thermoelastic damping ; Thickness-shear ; Vibrational trapping ; Waveguide thickness</subject><ispartof>2012 IEEE International Frequency Control Symposium Proceedings, 2012, p.1-6</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6243722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,26974,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6243722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Johnson, W. L.</creatorcontrib><creatorcontrib>Wallis, T. M.</creatorcontrib><creatorcontrib>Kabos, P.</creatorcontrib><creatorcontrib>Rocas, E.</creatorcontrib><creatorcontrib>Collado, C.</creatorcontrib><creatorcontrib>Liew, L.</creatorcontrib><creatorcontrib>Ha, J.-Y</creatorcontrib><creatorcontrib>Davydov, A. V.</creatorcontrib><creatorcontrib>Plankis, A.</creatorcontrib><creatorcontrib>Heyliger, P. R.</creatorcontrib><title>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</title><title>2012 IEEE International Frequency Control Symposium Proceedings</title><addtitle>FCS</addtitle><description>The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.</description><subject>Acoustic power</subject><subject>Acoustic resonance</subject><subject>Acoustics</subject><subject>Bridge circuits</subject><subject>Bridges</subject><subject>Charge carrier processes</subject><subject>Coplanar waveguides</subject><subject>Electromechanical transduction</subject><subject>Fabricated device</subject><subject>Finite-element</subject><subject>Gold</subject><subject>High damping</subject><subject>MEMS resonators</subject><subject>Microelectromechanical systems</subject><subject>Noise levels</subject><subject>Non-Linearity</subject><subject>Nulling</subject><subject>Orders of magnitude</subject><subject>Out-of-plane displacement</subject><subject>Reference lines</subject><subject>Shear displacement</subject><subject>Silicon</subject><subject>Silicon-bridge</subject><subject>Sistemes microelectromecànics</subject><subject>SOI wafers</subject><subject>Swept-frequency</subject><subject>Thermoelastic damping</subject><subject>Thickness-shear</subject><subject>Vibrational trapping</subject><subject>Waveguide thickness</subject><issn>2327-1914</issn><isbn>1457718219</isbn><isbn>9781457718212</isbn><isbn>9781457718199</isbn><isbn>1457718197</isbn><isbn>1457718200</isbn><isbn>9781457718199</isbn><isbn>9781457718205</isbn><isbn>1457718197</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkE1LAzEYhCMqWGvvgpf8ga353GSPpbQqtHionpds9k0b3W5Ksqv037vSQgeGYQ7zHAahR0qmlJLieTnfTBmhbJozwRVjV-ieCqkU1YyQ60uhxQ0aMc5URgsq7tAkpS8ySGlKJR0hN8PdztvvFlLK0g5MxOvFeoMjpNCaLkQM-0MTjr7dYmjAdjHswe5M661pcBdNm-redj60AyeGfrvDBttwaEw7oH7ND2x7X8MDunWmSTA55xh9Lhcf89ds9f7yNp-tMks56zKXSyFspUXuHJOQ56CdKaTVuXZQ6SqvBTdau4o7IbWgTsmC185WrpDEKsfHiJ64NvW2jGAhWtOVwfhL-TcjipWcD1w1bJ5OGw8A5SH6vYnH8vwr_wMqEWvv</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Johnson, W. L.</creator><creator>Wallis, T. M.</creator><creator>Kabos, P.</creator><creator>Rocas, E.</creator><creator>Collado, C.</creator><creator>Liew, L.</creator><creator>Ha, J.-Y</creator><creator>Davydov, A. V.</creator><creator>Plankis, A.</creator><creator>Heyliger, P. R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>XX2</scope></search><sort><creationdate>201205</creationdate><title>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</title><author>Johnson, W. L. ; Wallis, T. M. ; Kabos, P. ; Rocas, E. ; Collado, C. ; Liew, L. ; Ha, J.-Y ; Davydov, A. V. ; Plankis, A. ; Heyliger, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-f6544cb846ff25e66e8fa95c868feb8b6d43a88fb3f45841f7593dfcbf950c7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic power</topic><topic>Acoustic resonance</topic><topic>Acoustics</topic><topic>Bridge circuits</topic><topic>Bridges</topic><topic>Charge carrier processes</topic><topic>Coplanar waveguides</topic><topic>Electromechanical transduction</topic><topic>Fabricated device</topic><topic>Finite-element</topic><topic>Gold</topic><topic>High damping</topic><topic>MEMS resonators</topic><topic>Microelectromechanical systems</topic><topic>Noise levels</topic><topic>Non-Linearity</topic><topic>Nulling</topic><topic>Orders of magnitude</topic><topic>Out-of-plane displacement</topic><topic>Reference lines</topic><topic>Shear displacement</topic><topic>Silicon</topic><topic>Silicon-bridge</topic><topic>Sistemes microelectromecànics</topic><topic>SOI wafers</topic><topic>Swept-frequency</topic><topic>Thermoelastic damping</topic><topic>Thickness-shear</topic><topic>Vibrational trapping</topic><topic>Waveguide thickness</topic><toplevel>online_resources</toplevel><creatorcontrib>Johnson, W. L.</creatorcontrib><creatorcontrib>Wallis, T. M.</creatorcontrib><creatorcontrib>Kabos, P.</creatorcontrib><creatorcontrib>Rocas, E.</creatorcontrib><creatorcontrib>Collado, C.</creatorcontrib><creatorcontrib>Liew, L.</creatorcontrib><creatorcontrib>Ha, J.-Y</creatorcontrib><creatorcontrib>Davydov, A. V.</creatorcontrib><creatorcontrib>Plankis, A.</creatorcontrib><creatorcontrib>Heyliger, P. R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, W. L.</au><au>Wallis, T. M.</au><au>Kabos, P.</au><au>Rocas, E.</au><au>Collado, C.</au><au>Liew, L.</au><au>Ha, J.-Y</au><au>Davydov, A. V.</au><au>Plankis, A.</au><au>Heyliger, P. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</atitle><btitle>2012 IEEE International Frequency Control Symposium Proceedings</btitle><stitle>FCS</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2327-1914</issn><isbn>1457718219</isbn><isbn>9781457718212</isbn><isbn>9781457718199</isbn><isbn>1457718197</isbn><eisbn>1457718200</eisbn><eisbn>9781457718199</eisbn><eisbn>9781457718205</eisbn><eisbn>1457718197</eisbn><abstract>The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.</abstract><pub>IEEE</pub><doi>10.1109/FCS.2012.6243722</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-1914
ispartof 2012 IEEE International Frequency Control Symposium Proceedings, 2012, p.1-6
issn 2327-1914
language eng
recordid cdi_ieee_primary_6243722
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acoustic power
Acoustic resonance
Acoustics
Bridge circuits
Bridges
Charge carrier processes
Coplanar waveguides
Electromechanical transduction
Fabricated device
Finite-element
Gold
High damping
MEMS resonators
Microelectromechanical systems
Noise levels
Non-Linearity
Nulling
Orders of magnitude
Out-of-plane displacement
Reference lines
Shear displacement
Silicon
Silicon-bridge
Sistemes microelectromecànics
SOI wafers
Swept-frequency
Thermoelastic damping
Thickness-shear
Vibrational trapping
Waveguide thickness
title A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20thickness-shear%20MEMS%20resonator%20employing%20electromechanical%20transduction%20through%20a%20coplanar%20waveguide&rft.btitle=2012%20IEEE%20International%20Frequency%20Control%20Symposium%20Proceedings&rft.au=Johnson,%20W.%20L.&rft.date=2012-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2327-1914&rft.isbn=1457718219&rft.isbn_list=9781457718212&rft.isbn_list=9781457718199&rft.isbn_list=1457718197&rft_id=info:doi/10.1109/FCS.2012.6243722&rft_dat=%3Ccsuc_6IE%3Eoai_recercat_cat_2072_338687%3C/csuc_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457718200&rft.eisbn_list=9781457718199&rft.eisbn_list=9781457718205&rft.eisbn_list=1457718197&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6243722&rfr_iscdi=true