A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide
The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Johnson, W. L. Wallis, T. M. Kabos, P. Rocas, E. Collado, C. Liew, L. Ha, J.-Y Davydov, A. V. Plankis, A. Heyliger, P. R. |
description | The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate. |
doi_str_mv | 10.1109/FCS.2012.6243722 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>csuc_6IE</sourceid><recordid>TN_cdi_ieee_primary_6243722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6243722</ieee_id><sourcerecordid>oai_recercat_cat_2072_338687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c132t-f6544cb846ff25e66e8fa95c868feb8b6d43a88fb3f45841f7593dfcbf950c7f3</originalsourceid><addsrcrecordid>eNpFkE1LAzEYhCMqWGvvgpf8ga353GSPpbQqtHionpds9k0b3W5Ksqv037vSQgeGYQ7zHAahR0qmlJLieTnfTBmhbJozwRVjV-ieCqkU1YyQ60uhxQ0aMc5URgsq7tAkpS8ySGlKJR0hN8PdztvvFlLK0g5MxOvFeoMjpNCaLkQM-0MTjr7dYmjAdjHswe5M661pcBdNm-redj60AyeGfrvDBttwaEw7oH7ND2x7X8MDunWmSTA55xh9Lhcf89ds9f7yNp-tMks56zKXSyFspUXuHJOQ56CdKaTVuXZQ6SqvBTdau4o7IbWgTsmC185WrpDEKsfHiJ64NvW2jGAhWtOVwfhL-TcjipWcD1w1bJ5OGw8A5SH6vYnH8vwr_wMqEWvv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Johnson, W. L. ; Wallis, T. M. ; Kabos, P. ; Rocas, E. ; Collado, C. ; Liew, L. ; Ha, J.-Y ; Davydov, A. V. ; Plankis, A. ; Heyliger, P. R.</creator><creatorcontrib>Johnson, W. L. ; Wallis, T. M. ; Kabos, P. ; Rocas, E. ; Collado, C. ; Liew, L. ; Ha, J.-Y ; Davydov, A. V. ; Plankis, A. ; Heyliger, P. R.</creatorcontrib><description>The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.</description><identifier>ISSN: 2327-1914</identifier><identifier>ISBN: 1457718219</identifier><identifier>ISBN: 9781457718212</identifier><identifier>ISBN: 9781457718199</identifier><identifier>ISBN: 1457718197</identifier><identifier>EISBN: 1457718200</identifier><identifier>EISBN: 9781457718199</identifier><identifier>EISBN: 9781457718205</identifier><identifier>EISBN: 1457718197</identifier><identifier>DOI: 10.1109/FCS.2012.6243722</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustic power ; Acoustic resonance ; Acoustics ; Bridge circuits ; Bridges ; Charge carrier processes ; Coplanar waveguides ; Electromechanical transduction ; Fabricated device ; Finite-element ; Gold ; High damping ; MEMS resonators ; Microelectromechanical systems ; Noise levels ; Non-Linearity ; Nulling ; Orders of magnitude ; Out-of-plane displacement ; Reference lines ; Shear displacement ; Silicon ; Silicon-bridge ; Sistemes microelectromecànics ; SOI wafers ; Swept-frequency ; Thermoelastic damping ; Thickness-shear ; Vibrational trapping ; Waveguide thickness</subject><ispartof>2012 IEEE International Frequency Control Symposium Proceedings, 2012, p.1-6</ispartof><rights>info:eu-repo/semantics/openAccess</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6243722$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,780,784,789,790,885,2058,26974,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6243722$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Johnson, W. L.</creatorcontrib><creatorcontrib>Wallis, T. M.</creatorcontrib><creatorcontrib>Kabos, P.</creatorcontrib><creatorcontrib>Rocas, E.</creatorcontrib><creatorcontrib>Collado, C.</creatorcontrib><creatorcontrib>Liew, L.</creatorcontrib><creatorcontrib>Ha, J.-Y</creatorcontrib><creatorcontrib>Davydov, A. V.</creatorcontrib><creatorcontrib>Plankis, A.</creatorcontrib><creatorcontrib>Heyliger, P. R.</creatorcontrib><title>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</title><title>2012 IEEE International Frequency Control Symposium Proceedings</title><addtitle>FCS</addtitle><description>The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.</description><subject>Acoustic power</subject><subject>Acoustic resonance</subject><subject>Acoustics</subject><subject>Bridge circuits</subject><subject>Bridges</subject><subject>Charge carrier processes</subject><subject>Coplanar waveguides</subject><subject>Electromechanical transduction</subject><subject>Fabricated device</subject><subject>Finite-element</subject><subject>Gold</subject><subject>High damping</subject><subject>MEMS resonators</subject><subject>Microelectromechanical systems</subject><subject>Noise levels</subject><subject>Non-Linearity</subject><subject>Nulling</subject><subject>Orders of magnitude</subject><subject>Out-of-plane displacement</subject><subject>Reference lines</subject><subject>Shear displacement</subject><subject>Silicon</subject><subject>Silicon-bridge</subject><subject>Sistemes microelectromecànics</subject><subject>SOI wafers</subject><subject>Swept-frequency</subject><subject>Thermoelastic damping</subject><subject>Thickness-shear</subject><subject>Vibrational trapping</subject><subject>Waveguide thickness</subject><issn>2327-1914</issn><isbn>1457718219</isbn><isbn>9781457718212</isbn><isbn>9781457718199</isbn><isbn>1457718197</isbn><isbn>1457718200</isbn><isbn>9781457718199</isbn><isbn>9781457718205</isbn><isbn>1457718197</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>XX2</sourceid><recordid>eNpFkE1LAzEYhCMqWGvvgpf8ga353GSPpbQqtHionpds9k0b3W5Ksqv037vSQgeGYQ7zHAahR0qmlJLieTnfTBmhbJozwRVjV-ieCqkU1YyQ60uhxQ0aMc5URgsq7tAkpS8ySGlKJR0hN8PdztvvFlLK0g5MxOvFeoMjpNCaLkQM-0MTjr7dYmjAdjHswe5M661pcBdNm-redj60AyeGfrvDBttwaEw7oH7ND2x7X8MDunWmSTA55xh9Lhcf89ds9f7yNp-tMks56zKXSyFspUXuHJOQ56CdKaTVuXZQ6SqvBTdau4o7IbWgTsmC185WrpDEKsfHiJ64NvW2jGAhWtOVwfhL-TcjipWcD1w1bJ5OGw8A5SH6vYnH8vwr_wMqEWvv</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Johnson, W. L.</creator><creator>Wallis, T. M.</creator><creator>Kabos, P.</creator><creator>Rocas, E.</creator><creator>Collado, C.</creator><creator>Liew, L.</creator><creator>Ha, J.-Y</creator><creator>Davydov, A. V.</creator><creator>Plankis, A.</creator><creator>Heyliger, P. R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>XX2</scope></search><sort><creationdate>201205</creationdate><title>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</title><author>Johnson, W. L. ; Wallis, T. M. ; Kabos, P. ; Rocas, E. ; Collado, C. ; Liew, L. ; Ha, J.-Y ; Davydov, A. V. ; Plankis, A. ; Heyliger, P. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c132t-f6544cb846ff25e66e8fa95c868feb8b6d43a88fb3f45841f7593dfcbf950c7f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic power</topic><topic>Acoustic resonance</topic><topic>Acoustics</topic><topic>Bridge circuits</topic><topic>Bridges</topic><topic>Charge carrier processes</topic><topic>Coplanar waveguides</topic><topic>Electromechanical transduction</topic><topic>Fabricated device</topic><topic>Finite-element</topic><topic>Gold</topic><topic>High damping</topic><topic>MEMS resonators</topic><topic>Microelectromechanical systems</topic><topic>Noise levels</topic><topic>Non-Linearity</topic><topic>Nulling</topic><topic>Orders of magnitude</topic><topic>Out-of-plane displacement</topic><topic>Reference lines</topic><topic>Shear displacement</topic><topic>Silicon</topic><topic>Silicon-bridge</topic><topic>Sistemes microelectromecànics</topic><topic>SOI wafers</topic><topic>Swept-frequency</topic><topic>Thermoelastic damping</topic><topic>Thickness-shear</topic><topic>Vibrational trapping</topic><topic>Waveguide thickness</topic><toplevel>online_resources</toplevel><creatorcontrib>Johnson, W. L.</creatorcontrib><creatorcontrib>Wallis, T. M.</creatorcontrib><creatorcontrib>Kabos, P.</creatorcontrib><creatorcontrib>Rocas, E.</creatorcontrib><creatorcontrib>Collado, C.</creatorcontrib><creatorcontrib>Liew, L.</creatorcontrib><creatorcontrib>Ha, J.-Y</creatorcontrib><creatorcontrib>Davydov, A. V.</creatorcontrib><creatorcontrib>Plankis, A.</creatorcontrib><creatorcontrib>Heyliger, P. R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>Recercat</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Johnson, W. L.</au><au>Wallis, T. M.</au><au>Kabos, P.</au><au>Rocas, E.</au><au>Collado, C.</au><au>Liew, L.</au><au>Ha, J.-Y</au><au>Davydov, A. V.</au><au>Plankis, A.</au><au>Heyliger, P. R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide</atitle><btitle>2012 IEEE International Frequency Control Symposium Proceedings</btitle><stitle>FCS</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2327-1914</issn><isbn>1457718219</isbn><isbn>9781457718212</isbn><isbn>9781457718199</isbn><isbn>1457718197</isbn><eisbn>1457718200</eisbn><eisbn>9781457718199</eisbn><eisbn>9781457718205</eisbn><eisbn>1457718197</eisbn><abstract>The design, modeling, fabrication, and characterization of a vibrationally trapped thickness-shear MEMS resonator is presented. This device is intended to avoid various limitations of flexural MEMS resonators, including nonlinearity, clamping losses, thermoelastic damping, and high damping in liquid. It includes a silicon bridge and a reference line on an SOI wafer, a coupled Au/Cr coplanar waveguide, Lorentz-force coupling, variations in waveguide thickness for vibrational trapping, and circuitry for nulling the components of the signal that are unrelated to the acoustic resonance. Finite-element vibrational modeling shows the lowest thickness-shear mode with a bridge thickness of 4.9 μm to be dominated by shear displacements, with the magnitude of out-of-plane displacements decreasing with increasing bridge width. Two-dimensional modeling of vibrational trapping, with central regions of the waveguides having 43 nm greater thickness, indicates that amplitudes are reduced by several orders of magnitude at the ends of the bridges for the fundamental ~400 MHz thickness-shear resonance. Swept-frequency network-analyzer measurements of fabricated devices reveal no evidence for an acoustic resonance, despite a calculated prediction of levels of acoustic power absorption that are well above the measured noise level. A possible explanation for this result is stiction of the bridges to the substrate.</abstract><pub>IEEE</pub><doi>10.1109/FCS.2012.6243722</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-1914 |
ispartof | 2012 IEEE International Frequency Control Symposium Proceedings, 2012, p.1-6 |
issn | 2327-1914 |
language | eng |
recordid | cdi_ieee_primary_6243722 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acoustic power Acoustic resonance Acoustics Bridge circuits Bridges Charge carrier processes Coplanar waveguides Electromechanical transduction Fabricated device Finite-element Gold High damping MEMS resonators Microelectromechanical systems Noise levels Non-Linearity Nulling Orders of magnitude Out-of-plane displacement Reference lines Shear displacement Silicon Silicon-bridge Sistemes microelectromecànics SOI wafers Swept-frequency Thermoelastic damping Thickness-shear Vibrational trapping Waveguide thickness |
title | A thickness-shear MEMS resonator employing electromechanical transduction through a coplanar waveguide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-csuc_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20thickness-shear%20MEMS%20resonator%20employing%20electromechanical%20transduction%20through%20a%20coplanar%20waveguide&rft.btitle=2012%20IEEE%20International%20Frequency%20Control%20Symposium%20Proceedings&rft.au=Johnson,%20W.%20L.&rft.date=2012-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2327-1914&rft.isbn=1457718219&rft.isbn_list=9781457718212&rft.isbn_list=9781457718199&rft.isbn_list=1457718197&rft_id=info:doi/10.1109/FCS.2012.6243722&rft_dat=%3Ccsuc_6IE%3Eoai_recercat_cat_2072_338687%3C/csuc_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457718200&rft.eisbn_list=9781457718199&rft.eisbn_list=9781457718205&rft.eisbn_list=1457718197&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6243722&rfr_iscdi=true |