End to end modeling for variability and reliability analysis of thin film photovoltaics

We present an end-to-end modeling framework, spanning the device, module and also system levels, for analyzing thin film photovoltaics (PV). This approach is based on embedding a detailed, statistically relevant, physics based equivalent circuit into module and array level simulations. This approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dongaonkar, Sourabh, Alam, M. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4A.4.6
container_issue
container_start_page 4A.4.1
container_title
container_volume
creator Dongaonkar, Sourabh
Alam, M. A.
description We present an end-to-end modeling framework, spanning the device, module and also system levels, for analyzing thin film photovoltaics (PV). This approach is based on embedding a detailed, statistically relevant, physics based equivalent circuit into module and array level simulations. This approach enables us to analyze key variability and reliability issues in thin film PV, and allows us to interpret their effect on process yield and intrinsic module lifetimes. Our results suggest that the time-zero gap between cell and module efficiencies, a key variability concern for thin-film PV, can be attributed to process-related shunts with log-normal PDF distributed randomly across the cell surface. Similarly, this end-to-end simulation approach allows us to investigate the reliability issues caused by partial shadowing in thin film modules, especially in context of array configurations. These results provide important insights into its nature and consequences of shadow degradation on long term system performance. This work showcases the importance of an integrated analysis in case of thin film PV, because traditional approaches used to Silicon PV to tackle reliability/variability issues cannot be applied directly to such systems.
doi_str_mv 10.1109/IRPS.2012.6241828
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6241828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6241828</ieee_id><sourcerecordid>6241828</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-85eb0a9f2a8067ba39a30745137bc5bf2ecf6451823594a0596fd178635327ba3</originalsourceid><addsrcrecordid>eNpFkM1KAzEcxOMXWGsfQLzkBXbNP985SqlaKCha0FvJ7iY2km3KZins27ti0bkMw2-YwyB0A6QEIOZu-fryVlICtJSUg6b6BF0BF0qB1ARO0QQM0wVoA2d_QOmP8xEIDoUiVF6iWc5fZJTSQDmboPfFrsF9wm60NjUuht0n9qnDB9sFW4UY-gHbEXYj-s82DjlknDzut2GHfYgt3m9Tnw4p9jbU-RpdeBuzmx19itYPi_X8qVg9Py7n96siGNIXWriKWOOp1USqyjJjGVFcAFNVLSpPXe3lGDVlwnBLhJG-AaUlE4z-9Kfo9nc2OOc2-y60ths2x3_YN7rDVY0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>End to end modeling for variability and reliability analysis of thin film photovoltaics</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dongaonkar, Sourabh ; Alam, M. A.</creator><creatorcontrib>Dongaonkar, Sourabh ; Alam, M. A.</creatorcontrib><description>We present an end-to-end modeling framework, spanning the device, module and also system levels, for analyzing thin film photovoltaics (PV). This approach is based on embedding a detailed, statistically relevant, physics based equivalent circuit into module and array level simulations. This approach enables us to analyze key variability and reliability issues in thin film PV, and allows us to interpret their effect on process yield and intrinsic module lifetimes. Our results suggest that the time-zero gap between cell and module efficiencies, a key variability concern for thin-film PV, can be attributed to process-related shunts with log-normal PDF distributed randomly across the cell surface. Similarly, this end-to-end simulation approach allows us to investigate the reliability issues caused by partial shadowing in thin film modules, especially in context of array configurations. These results provide important insights into its nature and consequences of shadow degradation on long term system performance. This work showcases the importance of an integrated analysis in case of thin film PV, because traditional approaches used to Silicon PV to tackle reliability/variability issues cannot be applied directly to such systems.</description><identifier>ISSN: 1541-7026</identifier><identifier>ISBN: 145771678X</identifier><identifier>ISBN: 9781457716782</identifier><identifier>EISSN: 1938-1891</identifier><identifier>EISBN: 1457716801</identifier><identifier>EISBN: 9781457716799</identifier><identifier>EISBN: 9781457716805</identifier><identifier>EISBN: 1457716798</identifier><identifier>DOI: 10.1109/IRPS.2012.6241828</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arrays ; Degradation ; Equivalent circuits ; Integrated circuit modeling ; modeling and simulation ; partial shadow ; Reliability ; shunt ; Stress ; thin film PV ; variability</subject><ispartof>2012 IEEE International Reliability Physics Symposium (IRPS), 2012, p.4A.4.1-4A.4.6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6241828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6241828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dongaonkar, Sourabh</creatorcontrib><creatorcontrib>Alam, M. A.</creatorcontrib><title>End to end modeling for variability and reliability analysis of thin film photovoltaics</title><title>2012 IEEE International Reliability Physics Symposium (IRPS)</title><addtitle>IRPS</addtitle><description>We present an end-to-end modeling framework, spanning the device, module and also system levels, for analyzing thin film photovoltaics (PV). This approach is based on embedding a detailed, statistically relevant, physics based equivalent circuit into module and array level simulations. This approach enables us to analyze key variability and reliability issues in thin film PV, and allows us to interpret their effect on process yield and intrinsic module lifetimes. Our results suggest that the time-zero gap between cell and module efficiencies, a key variability concern for thin-film PV, can be attributed to process-related shunts with log-normal PDF distributed randomly across the cell surface. Similarly, this end-to-end simulation approach allows us to investigate the reliability issues caused by partial shadowing in thin film modules, especially in context of array configurations. These results provide important insights into its nature and consequences of shadow degradation on long term system performance. This work showcases the importance of an integrated analysis in case of thin film PV, because traditional approaches used to Silicon PV to tackle reliability/variability issues cannot be applied directly to such systems.</description><subject>Arrays</subject><subject>Degradation</subject><subject>Equivalent circuits</subject><subject>Integrated circuit modeling</subject><subject>modeling and simulation</subject><subject>partial shadow</subject><subject>Reliability</subject><subject>shunt</subject><subject>Stress</subject><subject>thin film PV</subject><subject>variability</subject><issn>1541-7026</issn><issn>1938-1891</issn><isbn>145771678X</isbn><isbn>9781457716782</isbn><isbn>1457716801</isbn><isbn>9781457716799</isbn><isbn>9781457716805</isbn><isbn>1457716798</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkM1KAzEcxOMXWGsfQLzkBXbNP985SqlaKCha0FvJ7iY2km3KZins27ti0bkMw2-YwyB0A6QEIOZu-fryVlICtJSUg6b6BF0BF0qB1ARO0QQM0wVoA2d_QOmP8xEIDoUiVF6iWc5fZJTSQDmboPfFrsF9wm60NjUuht0n9qnDB9sFW4UY-gHbEXYj-s82DjlknDzut2GHfYgt3m9Tnw4p9jbU-RpdeBuzmx19itYPi_X8qVg9Py7n96siGNIXWriKWOOp1USqyjJjGVFcAFNVLSpPXe3lGDVlwnBLhJG-AaUlE4z-9Kfo9nc2OOc2-y60ths2x3_YN7rDVY0</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Dongaonkar, Sourabh</creator><creator>Alam, M. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>End to end modeling for variability and reliability analysis of thin film photovoltaics</title><author>Dongaonkar, Sourabh ; Alam, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-85eb0a9f2a8067ba39a30745137bc5bf2ecf6451823594a0596fd178635327ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Arrays</topic><topic>Degradation</topic><topic>Equivalent circuits</topic><topic>Integrated circuit modeling</topic><topic>modeling and simulation</topic><topic>partial shadow</topic><topic>Reliability</topic><topic>shunt</topic><topic>Stress</topic><topic>thin film PV</topic><topic>variability</topic><toplevel>online_resources</toplevel><creatorcontrib>Dongaonkar, Sourabh</creatorcontrib><creatorcontrib>Alam, M. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dongaonkar, Sourabh</au><au>Alam, M. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>End to end modeling for variability and reliability analysis of thin film photovoltaics</atitle><btitle>2012 IEEE International Reliability Physics Symposium (IRPS)</btitle><stitle>IRPS</stitle><date>2012-04</date><risdate>2012</risdate><spage>4A.4.1</spage><epage>4A.4.6</epage><pages>4A.4.1-4A.4.6</pages><issn>1541-7026</issn><eissn>1938-1891</eissn><isbn>145771678X</isbn><isbn>9781457716782</isbn><eisbn>1457716801</eisbn><eisbn>9781457716799</eisbn><eisbn>9781457716805</eisbn><eisbn>1457716798</eisbn><abstract>We present an end-to-end modeling framework, spanning the device, module and also system levels, for analyzing thin film photovoltaics (PV). This approach is based on embedding a detailed, statistically relevant, physics based equivalent circuit into module and array level simulations. This approach enables us to analyze key variability and reliability issues in thin film PV, and allows us to interpret their effect on process yield and intrinsic module lifetimes. Our results suggest that the time-zero gap between cell and module efficiencies, a key variability concern for thin-film PV, can be attributed to process-related shunts with log-normal PDF distributed randomly across the cell surface. Similarly, this end-to-end simulation approach allows us to investigate the reliability issues caused by partial shadowing in thin film modules, especially in context of array configurations. These results provide important insights into its nature and consequences of shadow degradation on long term system performance. This work showcases the importance of an integrated analysis in case of thin film PV, because traditional approaches used to Silicon PV to tackle reliability/variability issues cannot be applied directly to such systems.</abstract><pub>IEEE</pub><doi>10.1109/IRPS.2012.6241828</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1541-7026
ispartof 2012 IEEE International Reliability Physics Symposium (IRPS), 2012, p.4A.4.1-4A.4.6
issn 1541-7026
1938-1891
language eng
recordid cdi_ieee_primary_6241828
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Degradation
Equivalent circuits
Integrated circuit modeling
modeling and simulation
partial shadow
Reliability
shunt
Stress
thin film PV
variability
title End to end modeling for variability and reliability analysis of thin film photovoltaics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T19%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=End%20to%20end%20modeling%20for%20variability%20and%20reliability%20analysis%20of%20thin%20film%20photovoltaics&rft.btitle=2012%20IEEE%20International%20Reliability%20Physics%20Symposium%20(IRPS)&rft.au=Dongaonkar,%20Sourabh&rft.date=2012-04&rft.spage=4A.4.1&rft.epage=4A.4.6&rft.pages=4A.4.1-4A.4.6&rft.issn=1541-7026&rft.eissn=1938-1891&rft.isbn=145771678X&rft.isbn_list=9781457716782&rft_id=info:doi/10.1109/IRPS.2012.6241828&rft_dat=%3Cieee_6IE%3E6241828%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457716801&rft.eisbn_list=9781457716799&rft.eisbn_list=9781457716805&rft.eisbn_list=1457716798&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6241828&rfr_iscdi=true