Spectrum Sensing for Networked System Using 1-Bit Compressed Sensing with Partial Random Circulant Measurement Matrices

Recently developed compressed sensing theory enables signal acquisition and reconstruction from incomplete information with high probability provided that the signal is sparsely represented in some basis. This paper applies compressed sensing for spectrum sensing in a networked system. To tackle the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Doohwan Lee, Sasaki, T., Yamada, T., Akabane, K., Yamaguchi, Y., Uehara, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Doohwan Lee
Sasaki, T.
Yamada, T.
Akabane, K.
Yamaguchi, Y.
Uehara, K.
description Recently developed compressed sensing theory enables signal acquisition and reconstruction from incomplete information with high probability provided that the signal is sparsely represented in some basis. This paper applies compressed sensing for spectrum sensing in a networked system. To tackle the calculation and communication cost problems, this paper also applies structured compressed sensing and 1-bit compressed sensing. Measurement using the partial random circulant matrices can reduce the calculation cost at the sacrifice of a slightly increased number of measurements by utilizing the fact that a circulant matrix is decomposed by multiplications of structured matrices. This paper investigates the tradeoff between calculation cost and compression performance. 1-bit compressed sensing extracts only sign data (1-bit quantization) from measured data, and reconstructs the original signal from the extracted sign data. Therefore, 1-bit compressed sensing can save communication costs associated with spectrum sensing in a networked system. This paper evaluates the efficiency of 1-bit compressed sensing. In addition, this paper also proposes a block reconstruction algorithm for 1-bit compressed sensing that uses the block sparsity of the signals. Empirical study shows that partial random circulant matrices work as efficient as completely random measurement matrices for spectrum sensing and that 1-bit compressed sensing can be used for spectrum sensing with greatly reduced communication costs.
doi_str_mv 10.1109/VETECS.2012.6240259
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6240259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6240259</ieee_id><sourcerecordid>6240259</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-b357194c0c1950fc53c0910c48dfb7f61645cf51335a59814d33f64530b4a7623</originalsourceid><addsrcrecordid>eNotUNtOAjEUrFETAfkCXvoDi6e3LX3UDV4SvMQFX0nptlpld0lbsuHvBd2nmTOTmeQMQhMCU0JA3XzMl_OinFIgdJpTDlSoMzQkPJcMlAJ5jsZKzvp7ptQFGhAhIKNU0Cs0jPEbgEtgdIC6cmdNCvsal7aJvvnErg34xaauDT-2wuUhJlvj1Z9FsjufcNHWu2BjPLl9pvPpC7_pkLze4nfdVG2NCx_MfqubhJ-tjvtga3viOgVvbLxGl05vox33OEKr-_myeMwWrw9Pxe0i80SKlG2YkERxA4YoAc4IZkARMHxWuY10Ocm5ME4QxoQW6vhyxZg7agw2XMucshGa_Pd6a-16F3ytw2Hdj8Z-AfvTX2I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Spectrum Sensing for Networked System Using 1-Bit Compressed Sensing with Partial Random Circulant Measurement Matrices</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Doohwan Lee ; Sasaki, T. ; Yamada, T. ; Akabane, K. ; Yamaguchi, Y. ; Uehara, K.</creator><creatorcontrib>Doohwan Lee ; Sasaki, T. ; Yamada, T. ; Akabane, K. ; Yamaguchi, Y. ; Uehara, K.</creatorcontrib><description>Recently developed compressed sensing theory enables signal acquisition and reconstruction from incomplete information with high probability provided that the signal is sparsely represented in some basis. This paper applies compressed sensing for spectrum sensing in a networked system. To tackle the calculation and communication cost problems, this paper also applies structured compressed sensing and 1-bit compressed sensing. Measurement using the partial random circulant matrices can reduce the calculation cost at the sacrifice of a slightly increased number of measurements by utilizing the fact that a circulant matrix is decomposed by multiplications of structured matrices. This paper investigates the tradeoff between calculation cost and compression performance. 1-bit compressed sensing extracts only sign data (1-bit quantization) from measured data, and reconstructs the original signal from the extracted sign data. Therefore, 1-bit compressed sensing can save communication costs associated with spectrum sensing in a networked system. This paper evaluates the efficiency of 1-bit compressed sensing. In addition, this paper also proposes a block reconstruction algorithm for 1-bit compressed sensing that uses the block sparsity of the signals. Empirical study shows that partial random circulant matrices work as efficient as completely random measurement matrices for spectrum sensing and that 1-bit compressed sensing can be used for spectrum sensing with greatly reduced communication costs.</description><identifier>ISSN: 1550-2252</identifier><identifier>ISBN: 9781467309899</identifier><identifier>ISBN: 1467309893</identifier><identifier>EISBN: 1467309907</identifier><identifier>EISBN: 9781467309882</identifier><identifier>EISBN: 1467309885</identifier><identifier>EISBN: 9781467309905</identifier><identifier>DOI: 10.1109/VETECS.2012.6240259</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compressed sensing ; Extraterrestrial measurements ; Matrix decomposition ; Quantization ; Sensors ; Sparse matrices ; Vectors</subject><ispartof>2012 IEEE 75th Vehicular Technology Conference (VTC Spring), 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6240259$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6240259$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doohwan Lee</creatorcontrib><creatorcontrib>Sasaki, T.</creatorcontrib><creatorcontrib>Yamada, T.</creatorcontrib><creatorcontrib>Akabane, K.</creatorcontrib><creatorcontrib>Yamaguchi, Y.</creatorcontrib><creatorcontrib>Uehara, K.</creatorcontrib><title>Spectrum Sensing for Networked System Using 1-Bit Compressed Sensing with Partial Random Circulant Measurement Matrices</title><title>2012 IEEE 75th Vehicular Technology Conference (VTC Spring)</title><addtitle>VETECS</addtitle><description>Recently developed compressed sensing theory enables signal acquisition and reconstruction from incomplete information with high probability provided that the signal is sparsely represented in some basis. This paper applies compressed sensing for spectrum sensing in a networked system. To tackle the calculation and communication cost problems, this paper also applies structured compressed sensing and 1-bit compressed sensing. Measurement using the partial random circulant matrices can reduce the calculation cost at the sacrifice of a slightly increased number of measurements by utilizing the fact that a circulant matrix is decomposed by multiplications of structured matrices. This paper investigates the tradeoff between calculation cost and compression performance. 1-bit compressed sensing extracts only sign data (1-bit quantization) from measured data, and reconstructs the original signal from the extracted sign data. Therefore, 1-bit compressed sensing can save communication costs associated with spectrum sensing in a networked system. This paper evaluates the efficiency of 1-bit compressed sensing. In addition, this paper also proposes a block reconstruction algorithm for 1-bit compressed sensing that uses the block sparsity of the signals. Empirical study shows that partial random circulant matrices work as efficient as completely random measurement matrices for spectrum sensing and that 1-bit compressed sensing can be used for spectrum sensing with greatly reduced communication costs.</description><subject>Compressed sensing</subject><subject>Extraterrestrial measurements</subject><subject>Matrix decomposition</subject><subject>Quantization</subject><subject>Sensors</subject><subject>Sparse matrices</subject><subject>Vectors</subject><issn>1550-2252</issn><isbn>9781467309899</isbn><isbn>1467309893</isbn><isbn>1467309907</isbn><isbn>9781467309882</isbn><isbn>1467309885</isbn><isbn>9781467309905</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUNtOAjEUrFETAfkCXvoDi6e3LX3UDV4SvMQFX0nptlpld0lbsuHvBd2nmTOTmeQMQhMCU0JA3XzMl_OinFIgdJpTDlSoMzQkPJcMlAJ5jsZKzvp7ptQFGhAhIKNU0Cs0jPEbgEtgdIC6cmdNCvsal7aJvvnErg34xaauDT-2wuUhJlvj1Z9FsjufcNHWu2BjPLl9pvPpC7_pkLze4nfdVG2NCx_MfqubhJ-tjvtga3viOgVvbLxGl05vox33OEKr-_myeMwWrw9Pxe0i80SKlG2YkERxA4YoAc4IZkARMHxWuY10Ocm5ME4QxoQW6vhyxZg7agw2XMucshGa_Pd6a-16F3ytw2Hdj8Z-AfvTX2I</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Doohwan Lee</creator><creator>Sasaki, T.</creator><creator>Yamada, T.</creator><creator>Akabane, K.</creator><creator>Yamaguchi, Y.</creator><creator>Uehara, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Spectrum Sensing for Networked System Using 1-Bit Compressed Sensing with Partial Random Circulant Measurement Matrices</title><author>Doohwan Lee ; Sasaki, T. ; Yamada, T. ; Akabane, K. ; Yamaguchi, Y. ; Uehara, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-b357194c0c1950fc53c0910c48dfb7f61645cf51335a59814d33f64530b4a7623</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Compressed sensing</topic><topic>Extraterrestrial measurements</topic><topic>Matrix decomposition</topic><topic>Quantization</topic><topic>Sensors</topic><topic>Sparse matrices</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Doohwan Lee</creatorcontrib><creatorcontrib>Sasaki, T.</creatorcontrib><creatorcontrib>Yamada, T.</creatorcontrib><creatorcontrib>Akabane, K.</creatorcontrib><creatorcontrib>Yamaguchi, Y.</creatorcontrib><creatorcontrib>Uehara, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doohwan Lee</au><au>Sasaki, T.</au><au>Yamada, T.</au><au>Akabane, K.</au><au>Yamaguchi, Y.</au><au>Uehara, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Spectrum Sensing for Networked System Using 1-Bit Compressed Sensing with Partial Random Circulant Measurement Matrices</atitle><btitle>2012 IEEE 75th Vehicular Technology Conference (VTC Spring)</btitle><stitle>VETECS</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1550-2252</issn><isbn>9781467309899</isbn><isbn>1467309893</isbn><eisbn>1467309907</eisbn><eisbn>9781467309882</eisbn><eisbn>1467309885</eisbn><eisbn>9781467309905</eisbn><abstract>Recently developed compressed sensing theory enables signal acquisition and reconstruction from incomplete information with high probability provided that the signal is sparsely represented in some basis. This paper applies compressed sensing for spectrum sensing in a networked system. To tackle the calculation and communication cost problems, this paper also applies structured compressed sensing and 1-bit compressed sensing. Measurement using the partial random circulant matrices can reduce the calculation cost at the sacrifice of a slightly increased number of measurements by utilizing the fact that a circulant matrix is decomposed by multiplications of structured matrices. This paper investigates the tradeoff between calculation cost and compression performance. 1-bit compressed sensing extracts only sign data (1-bit quantization) from measured data, and reconstructs the original signal from the extracted sign data. Therefore, 1-bit compressed sensing can save communication costs associated with spectrum sensing in a networked system. This paper evaluates the efficiency of 1-bit compressed sensing. In addition, this paper also proposes a block reconstruction algorithm for 1-bit compressed sensing that uses the block sparsity of the signals. Empirical study shows that partial random circulant matrices work as efficient as completely random measurement matrices for spectrum sensing and that 1-bit compressed sensing can be used for spectrum sensing with greatly reduced communication costs.</abstract><pub>IEEE</pub><doi>10.1109/VETECS.2012.6240259</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-2252
ispartof 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), 2012, p.1-5
issn 1550-2252
language eng
recordid cdi_ieee_primary_6240259
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Compressed sensing
Extraterrestrial measurements
Matrix decomposition
Quantization
Sensors
Sparse matrices
Vectors
title Spectrum Sensing for Networked System Using 1-Bit Compressed Sensing with Partial Random Circulant Measurement Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Spectrum%20Sensing%20for%20Networked%20System%20Using%201-Bit%20Compressed%20Sensing%20with%20Partial%20Random%20Circulant%20Measurement%20Matrices&rft.btitle=2012%20IEEE%2075th%20Vehicular%20Technology%20Conference%20(VTC%20Spring)&rft.au=Doohwan%20Lee&rft.date=2012-05&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1550-2252&rft.isbn=9781467309899&rft.isbn_list=1467309893&rft_id=info:doi/10.1109/VETECS.2012.6240259&rft_dat=%3Cieee_6IE%3E6240259%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467309907&rft.eisbn_list=9781467309882&rft.eisbn_list=1467309885&rft.eisbn_list=9781467309905&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6240259&rfr_iscdi=true