Estimation of deterministic and stochastic IMU error parameters

Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Unsal, D., Demirbas, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 868
container_issue
container_start_page 862
container_title
container_volume
creator Unsal, D.
Demirbas, K.
description Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors contain two main types of errors which are deterministic errors like scale factor, bias, misalignment and stochastic errors such as bias instability and scale factor instability. Deterministic errors are the main part of error compensation algorithms. This study explains the methodology of how the deterministic errors are defined by 27 state static and 60 state dynamic rate table calibration test data and how those errors are used in the error compensation model. In addition, the stochastic error parameters, gyroscope and bias instability, are also modeled with Gauss Markov Model and instant sensor bias instability values are estimated by Kalman Filter algorithm. Therefore, accelerometer and gyroscope bias instability can be compensated in real time. In conclusion, this article explores how the IMU performance is improved by compensating the deterministic end stochastic errors. The simulation results are supported by real IMU test data.
doi_str_mv 10.1109/PLANS.2012.6236828
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6236828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6236828</ieee_id><sourcerecordid>6236828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c224t-9d355a4b02eb1f111e2e9015726f62385d5baab361f6b1f7bed408cabee260633</originalsourceid><addsrcrecordid>eNpVUMtKxEAQHF_gsuYH9DI_kDg9nXmdZFl2dSE-QBe8LTNJByMmWSa5-PdGXQT70nRVUXQVY5cgMgDhrp-KxcNzJgXITEvUVtojljhjIdcGBVqDx2wmQWGKytmTf5xyp3-cfT1nyTC8i2mMkgphxm5Ww9i0fmz6jvc1r2ik2DZdM6El913Fh7Ev3_zPubnfcoqxj3zvo2-_pcMFO6v9x0DJYc_Zdr16Wd6lxePtZrko0lLKfExdhUr5PAhJAWoAIElOgDJS11MmqyoVvA-oodaTwASqcmFLH4ikFhpxzq5-fRsi2u3j9HP83B3qwC8ToU8t</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimation of deterministic and stochastic IMU error parameters</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Unsal, D. ; Demirbas, K.</creator><creatorcontrib>Unsal, D. ; Demirbas, K.</creatorcontrib><description>Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors contain two main types of errors which are deterministic errors like scale factor, bias, misalignment and stochastic errors such as bias instability and scale factor instability. Deterministic errors are the main part of error compensation algorithms. This study explains the methodology of how the deterministic errors are defined by 27 state static and 60 state dynamic rate table calibration test data and how those errors are used in the error compensation model. In addition, the stochastic error parameters, gyroscope and bias instability, are also modeled with Gauss Markov Model and instant sensor bias instability values are estimated by Kalman Filter algorithm. Therefore, accelerometer and gyroscope bias instability can be compensated in real time. In conclusion, this article explores how the IMU performance is improved by compensating the deterministic end stochastic errors. The simulation results are supported by real IMU test data.</description><identifier>ISSN: 2153-358X</identifier><identifier>ISBN: 9781467303859</identifier><identifier>ISBN: 1467303852</identifier><identifier>EISSN: 2153-3598</identifier><identifier>EISBN: 9781467303873</identifier><identifier>EISBN: 9781467303866</identifier><identifier>EISBN: 1467303879</identifier><identifier>EISBN: 1467303860</identifier><identifier>DOI: 10.1109/PLANS.2012.6236828</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; accelerometer ; gyroscope ; Gyroscopes ; Inertial Measurement Unit ; Kalman filter ; Manganese ; Measurement uncertainty ; Navigation ; Stochastic processes</subject><ispartof>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, 2012, p.862-868</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c224t-9d355a4b02eb1f111e2e9015726f62385d5baab361f6b1f7bed408cabee260633</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6236828$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6236828$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Unsal, D.</creatorcontrib><creatorcontrib>Demirbas, K.</creatorcontrib><title>Estimation of deterministic and stochastic IMU error parameters</title><title>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium</title><addtitle>PLANS</addtitle><description>Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors contain two main types of errors which are deterministic errors like scale factor, bias, misalignment and stochastic errors such as bias instability and scale factor instability. Deterministic errors are the main part of error compensation algorithms. This study explains the methodology of how the deterministic errors are defined by 27 state static and 60 state dynamic rate table calibration test data and how those errors are used in the error compensation model. In addition, the stochastic error parameters, gyroscope and bias instability, are also modeled with Gauss Markov Model and instant sensor bias instability values are estimated by Kalman Filter algorithm. Therefore, accelerometer and gyroscope bias instability can be compensated in real time. In conclusion, this article explores how the IMU performance is improved by compensating the deterministic end stochastic errors. The simulation results are supported by real IMU test data.</description><subject>Acceleration</subject><subject>accelerometer</subject><subject>gyroscope</subject><subject>Gyroscopes</subject><subject>Inertial Measurement Unit</subject><subject>Kalman filter</subject><subject>Manganese</subject><subject>Measurement uncertainty</subject><subject>Navigation</subject><subject>Stochastic processes</subject><issn>2153-358X</issn><issn>2153-3598</issn><isbn>9781467303859</isbn><isbn>1467303852</isbn><isbn>9781467303873</isbn><isbn>9781467303866</isbn><isbn>1467303879</isbn><isbn>1467303860</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMtKxEAQHF_gsuYH9DI_kDg9nXmdZFl2dSE-QBe8LTNJByMmWSa5-PdGXQT70nRVUXQVY5cgMgDhrp-KxcNzJgXITEvUVtojljhjIdcGBVqDx2wmQWGKytmTf5xyp3-cfT1nyTC8i2mMkgphxm5Ww9i0fmz6jvc1r2ik2DZdM6El913Fh7Ev3_zPubnfcoqxj3zvo2-_pcMFO6v9x0DJYc_Zdr16Wd6lxePtZrko0lLKfExdhUr5PAhJAWoAIElOgDJS11MmqyoVvA-oodaTwASqcmFLH4ikFhpxzq5-fRsi2u3j9HP83B3qwC8ToU8t</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Unsal, D.</creator><creator>Demirbas, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>Estimation of deterministic and stochastic IMU error parameters</title><author>Unsal, D. ; Demirbas, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c224t-9d355a4b02eb1f111e2e9015726f62385d5baab361f6b1f7bed408cabee260633</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>accelerometer</topic><topic>gyroscope</topic><topic>Gyroscopes</topic><topic>Inertial Measurement Unit</topic><topic>Kalman filter</topic><topic>Manganese</topic><topic>Measurement uncertainty</topic><topic>Navigation</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Unsal, D.</creatorcontrib><creatorcontrib>Demirbas, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unsal, D.</au><au>Demirbas, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimation of deterministic and stochastic IMU error parameters</atitle><btitle>Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium</btitle><stitle>PLANS</stitle><date>2012-04</date><risdate>2012</risdate><spage>862</spage><epage>868</epage><pages>862-868</pages><issn>2153-358X</issn><eissn>2153-3598</eissn><isbn>9781467303859</isbn><isbn>1467303852</isbn><eisbn>9781467303873</eisbn><eisbn>9781467303866</eisbn><eisbn>1467303879</eisbn><eisbn>1467303860</eisbn><abstract>Inertial Measurement Units, the main component of a navigation system, are used in several systems today. IMU's main components, gyroscopes and accelerometers, can be produced at a lower cost and higher quantity. Together with the decrease in the production cost of sensors it is observed that the performances of these sensors are getting worse. In order to improve the performance of an IMU, the error compensation algorithms came into question and several algorithms have been designed. Inertial sensors contain two main types of errors which are deterministic errors like scale factor, bias, misalignment and stochastic errors such as bias instability and scale factor instability. Deterministic errors are the main part of error compensation algorithms. This study explains the methodology of how the deterministic errors are defined by 27 state static and 60 state dynamic rate table calibration test data and how those errors are used in the error compensation model. In addition, the stochastic error parameters, gyroscope and bias instability, are also modeled with Gauss Markov Model and instant sensor bias instability values are estimated by Kalman Filter algorithm. Therefore, accelerometer and gyroscope bias instability can be compensated in real time. In conclusion, this article explores how the IMU performance is improved by compensating the deterministic end stochastic errors. The simulation results are supported by real IMU test data.</abstract><pub>IEEE</pub><doi>10.1109/PLANS.2012.6236828</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-358X
ispartof Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, 2012, p.862-868
issn 2153-358X
2153-3598
language eng
recordid cdi_ieee_primary_6236828
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
accelerometer
gyroscope
Gyroscopes
Inertial Measurement Unit
Kalman filter
Manganese
Measurement uncertainty
Navigation
Stochastic processes
title Estimation of deterministic and stochastic IMU error parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimation%20of%20deterministic%20and%20stochastic%20IMU%20error%20parameters&rft.btitle=Proceedings%20of%20the%202012%20IEEE/ION%20Position,%20Location%20and%20Navigation%20Symposium&rft.au=Unsal,%20D.&rft.date=2012-04&rft.spage=862&rft.epage=868&rft.pages=862-868&rft.issn=2153-358X&rft.eissn=2153-3598&rft.isbn=9781467303859&rft.isbn_list=1467303852&rft_id=info:doi/10.1109/PLANS.2012.6236828&rft_dat=%3Cieee_6IE%3E6236828%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303873&rft.eisbn_list=9781467303866&rft.eisbn_list=1467303879&rft.eisbn_list=1467303860&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6236828&rfr_iscdi=true