Prognosis of stage I lung cancer patients through quantitative analysis of centrosomal features

Centrosome amplification leads to the loss of regulated chromosome segregation, aneuploidy, and chromosome instability and has the possibility to be a biomarker of cancer prognosis. To explore this feasibility, resected, stage I non-small cell lung cancer (NSCLC) tissues from six survivor and six fa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dansheng Song, Zhukov, T. A., Markov, O., Wei Qian, Tockman, M. S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1610
container_issue
container_start_page 1607
container_title
container_volume
creator Dansheng Song
Zhukov, T. A.
Markov, O.
Wei Qian
Tockman, M. S.
description Centrosome amplification leads to the loss of regulated chromosome segregation, aneuploidy, and chromosome instability and has the possibility to be a biomarker of cancer prognosis. To explore this feasibility, resected, stage I non-small cell lung cancer (NSCLC) tissues from six survivor and six fatal cases were immunostained and scanned. Regions of interest were selected to include one cell and its centrosomes. After segmentation, feature abstraction, and optimization, six nonredundant features were used for statistical analysis and classification. Two analytic methods showed that for each feature, centrosomes from survivors differed from centrosomes of fatalities, indicating sampling from different populations. The data were classified using linear discriminant analysis (LDA) and support vector machines (SVM) with 10-fold cross-validation. Classification accuracy was 74% by LDA and 79% by SVM, respectively, and further improved to 85% with bagging. Centrosome can be a biomarker for stage I NSCLC prognosis and has potential for clinical utility.
doi_str_mv 10.1109/ISBI.2012.6235883
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6235883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6235883</ieee_id><sourcerecordid>6235883</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a0d7a476d77590d7689fe3e9be821e130b8a4bea93949551fe932d25a21b0f163</originalsourceid><addsrcrecordid>eNo1kN1Kw0AQhdc_sNY8gHizL5C6v9ndSy1VAwUFFbwrk2aSRtKk7m6Evr0B47mZw_lm5uIQcsPZgnPm7vK3h3whGBeLTEhtrTwhiTOWK20Mt2NwSmbcKZ1apcUZufoH5vN8AsYJe0mSEL7YKKOUZGpGNq--r7s-NIH2FQ0RaqQ5bYeuplvotujpAWKDXQw07nw_1Dv6PUAXmzjGP0ihg_Y4XW_HNd-Hfg8trRDi4DFck4sK2oDJNOfk43H1vnxO1y9P-fJ-nTbc6JgCKw0ok5XGaDf6zLoKJboCreDIJSssqALBSaec1rxCJ0UpNAhesIpnck5u__42iLg5-GYP_riZupK_lY5adA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Prognosis of stage I lung cancer patients through quantitative analysis of centrosomal features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dansheng Song ; Zhukov, T. A. ; Markov, O. ; Wei Qian ; Tockman, M. S.</creator><creatorcontrib>Dansheng Song ; Zhukov, T. A. ; Markov, O. ; Wei Qian ; Tockman, M. S.</creatorcontrib><description>Centrosome amplification leads to the loss of regulated chromosome segregation, aneuploidy, and chromosome instability and has the possibility to be a biomarker of cancer prognosis. To explore this feasibility, resected, stage I non-small cell lung cancer (NSCLC) tissues from six survivor and six fatal cases were immunostained and scanned. Regions of interest were selected to include one cell and its centrosomes. After segmentation, feature abstraction, and optimization, six nonredundant features were used for statistical analysis and classification. Two analytic methods showed that for each feature, centrosomes from survivors differed from centrosomes of fatalities, indicating sampling from different populations. The data were classified using linear discriminant analysis (LDA) and support vector machines (SVM) with 10-fold cross-validation. Classification accuracy was 74% by LDA and 79% by SVM, respectively, and further improved to 85% with bagging. Centrosome can be a biomarker for stage I NSCLC prognosis and has potential for clinical utility.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 145771857X</identifier><identifier>ISBN: 9781457718571</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781457718588</identifier><identifier>EISBN: 9781457718564</identifier><identifier>EISBN: 1457718588</identifier><identifier>EISBN: 1457718561</identifier><identifier>DOI: 10.1109/ISBI.2012.6235883</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Biomarker ; Cancer ; Centrosome ; Error analysis ; Features ; Linear discriminant analysis ; Lung cancer ; Lungs ; Prognosis ; Statistical analysis ; Support vector machines</subject><ispartof>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012, p.1607-1610</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6235883$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6235883$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dansheng Song</creatorcontrib><creatorcontrib>Zhukov, T. A.</creatorcontrib><creatorcontrib>Markov, O.</creatorcontrib><creatorcontrib>Wei Qian</creatorcontrib><creatorcontrib>Tockman, M. S.</creatorcontrib><title>Prognosis of stage I lung cancer patients through quantitative analysis of centrosomal features</title><title>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Centrosome amplification leads to the loss of regulated chromosome segregation, aneuploidy, and chromosome instability and has the possibility to be a biomarker of cancer prognosis. To explore this feasibility, resected, stage I non-small cell lung cancer (NSCLC) tissues from six survivor and six fatal cases were immunostained and scanned. Regions of interest were selected to include one cell and its centrosomes. After segmentation, feature abstraction, and optimization, six nonredundant features were used for statistical analysis and classification. Two analytic methods showed that for each feature, centrosomes from survivors differed from centrosomes of fatalities, indicating sampling from different populations. The data were classified using linear discriminant analysis (LDA) and support vector machines (SVM) with 10-fold cross-validation. Classification accuracy was 74% by LDA and 79% by SVM, respectively, and further improved to 85% with bagging. Centrosome can be a biomarker for stage I NSCLC prognosis and has potential for clinical utility.</description><subject>Accuracy</subject><subject>Biomarker</subject><subject>Cancer</subject><subject>Centrosome</subject><subject>Error analysis</subject><subject>Features</subject><subject>Linear discriminant analysis</subject><subject>Lung cancer</subject><subject>Lungs</subject><subject>Prognosis</subject><subject>Statistical analysis</subject><subject>Support vector machines</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>145771857X</isbn><isbn>9781457718571</isbn><isbn>9781457718588</isbn><isbn>9781457718564</isbn><isbn>1457718588</isbn><isbn>1457718561</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kN1Kw0AQhdc_sNY8gHizL5C6v9ndSy1VAwUFFbwrk2aSRtKk7m6Evr0B47mZw_lm5uIQcsPZgnPm7vK3h3whGBeLTEhtrTwhiTOWK20Mt2NwSmbcKZ1apcUZufoH5vN8AsYJe0mSEL7YKKOUZGpGNq--r7s-NIH2FQ0RaqQ5bYeuplvotujpAWKDXQw07nw_1Dv6PUAXmzjGP0ihg_Y4XW_HNd-Hfg8trRDi4DFck4sK2oDJNOfk43H1vnxO1y9P-fJ-nTbc6JgCKw0ok5XGaDf6zLoKJboCreDIJSssqALBSaec1rxCJ0UpNAhesIpnck5u__42iLg5-GYP_riZupK_lY5adA</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Dansheng Song</creator><creator>Zhukov, T. A.</creator><creator>Markov, O.</creator><creator>Wei Qian</creator><creator>Tockman, M. S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Prognosis of stage I lung cancer patients through quantitative analysis of centrosomal features</title><author>Dansheng Song ; Zhukov, T. A. ; Markov, O. ; Wei Qian ; Tockman, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a0d7a476d77590d7689fe3e9be821e130b8a4bea93949551fe932d25a21b0f163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Biomarker</topic><topic>Cancer</topic><topic>Centrosome</topic><topic>Error analysis</topic><topic>Features</topic><topic>Linear discriminant analysis</topic><topic>Lung cancer</topic><topic>Lungs</topic><topic>Prognosis</topic><topic>Statistical analysis</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Dansheng Song</creatorcontrib><creatorcontrib>Zhukov, T. A.</creatorcontrib><creatorcontrib>Markov, O.</creatorcontrib><creatorcontrib>Wei Qian</creatorcontrib><creatorcontrib>Tockman, M. S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dansheng Song</au><au>Zhukov, T. A.</au><au>Markov, O.</au><au>Wei Qian</au><au>Tockman, M. S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prognosis of stage I lung cancer patients through quantitative analysis of centrosomal features</atitle><btitle>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2012-05</date><risdate>2012</risdate><spage>1607</spage><epage>1610</epage><pages>1607-1610</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>145771857X</isbn><isbn>9781457718571</isbn><eisbn>9781457718588</eisbn><eisbn>9781457718564</eisbn><eisbn>1457718588</eisbn><eisbn>1457718561</eisbn><abstract>Centrosome amplification leads to the loss of regulated chromosome segregation, aneuploidy, and chromosome instability and has the possibility to be a biomarker of cancer prognosis. To explore this feasibility, resected, stage I non-small cell lung cancer (NSCLC) tissues from six survivor and six fatal cases were immunostained and scanned. Regions of interest were selected to include one cell and its centrosomes. After segmentation, feature abstraction, and optimization, six nonredundant features were used for statistical analysis and classification. Two analytic methods showed that for each feature, centrosomes from survivors differed from centrosomes of fatalities, indicating sampling from different populations. The data were classified using linear discriminant analysis (LDA) and support vector machines (SVM) with 10-fold cross-validation. Classification accuracy was 74% by LDA and 79% by SVM, respectively, and further improved to 85% with bagging. Centrosome can be a biomarker for stage I NSCLC prognosis and has potential for clinical utility.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2012.6235883</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012, p.1607-1610
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_6235883
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Biomarker
Cancer
Centrosome
Error analysis
Features
Linear discriminant analysis
Lung cancer
Lungs
Prognosis
Statistical analysis
Support vector machines
title Prognosis of stage I lung cancer patients through quantitative analysis of centrosomal features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A41%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prognosis%20of%20stage%20I%20lung%20cancer%20patients%20through%20quantitative%20analysis%20of%20centrosomal%20features&rft.btitle=2012%209th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Dansheng%20Song&rft.date=2012-05&rft.spage=1607&rft.epage=1610&rft.pages=1607-1610&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=145771857X&rft.isbn_list=9781457718571&rft_id=info:doi/10.1109/ISBI.2012.6235883&rft_dat=%3Cieee_6IE%3E6235883%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457718588&rft.eisbn_list=9781457718564&rft.eisbn_list=1457718588&rft.eisbn_list=1457718561&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6235883&rfr_iscdi=true