Textural mutual information based on cluster trees for multimodal deformable registration

Mutual information (MI) has been widely used in image analysis tasks such as feature selection and image registration. In particular, it is the most widely used similarity measure for intensity based registration of multimodal images. However, a major drawback of MI is that it does not take the spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Heinrich, M. P., Jenkinson, M., Brady, M., Schnabel, J. A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1474
container_issue
container_start_page 1471
container_title
container_volume
creator Heinrich, M. P.
Jenkinson, M.
Brady, M.
Schnabel, J. A.
description Mutual information (MI) has been widely used in image analysis tasks such as feature selection and image registration. In particular, it is the most widely used similarity measure for intensity based registration of multimodal images. However, a major drawback of MI is that it does not take the spatial neighbourhood into account. An effective way of incorporating spatial information could be of great benefit in a number of challenging applications. We propose the use of cluster trees to efficiently incorporate textural information from the local neighbourhood of a voxel into the computation of MI, while at the same time limiting the number of bins used to represent this higher-order information. This new similarity metric is optimised using a Markov random field (MRF). We apply our new method to the registration of dynamic lung CT volumes with simulated contrast. Experimental results show the advantages of this technique compared to standard mutual information.
doi_str_mv 10.1109/ISBI.2012.6235849
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6235849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6235849</ieee_id><sourcerecordid>6235849</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8351b4d192a5316fd7fc7503f2a7e6e23b797fe0542fee376df7ce85ef23381c3</originalsourceid><addsrcrecordid>eNo1kEtLxDAUheMLHMf-AHHTP9Axz95kqYOPwoALR9DVkLY3EmmnkqSg_94y1rM5B8757uIScsXoijFqbqqXu2rFKeOrkgulpTkimQHNpAJgWml9TBbMSFVoqfgJufgv4O10LsBwfU6yGD_pJJBSULkg71v8TmOwXd6PaZzM790Qepv8sM9rG7HNp9B0Y0wY8hQQYz4NpnWXfD-0E9Higag7zAN--JjCgb4kZ852EbPZl-T14X67fio2z4_V-nZTeAYqFVooVsuWGW6VYKVrwTWgqHDcApbIRQ0GHFIluUMUULYOGtQKHRdCs0YsyfXfXY-Iu6_gext-dvOXxC-Jllj9</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Textural mutual information based on cluster trees for multimodal deformable registration</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Heinrich, M. P. ; Jenkinson, M. ; Brady, M. ; Schnabel, J. A.</creator><creatorcontrib>Heinrich, M. P. ; Jenkinson, M. ; Brady, M. ; Schnabel, J. A.</creatorcontrib><description>Mutual information (MI) has been widely used in image analysis tasks such as feature selection and image registration. In particular, it is the most widely used similarity measure for intensity based registration of multimodal images. However, a major drawback of MI is that it does not take the spatial neighbourhood into account. An effective way of incorporating spatial information could be of great benefit in a number of challenging applications. We propose the use of cluster trees to efficiently incorporate textural information from the local neighbourhood of a voxel into the computation of MI, while at the same time limiting the number of bins used to represent this higher-order information. This new similarity metric is optimised using a Markov random field (MRF). We apply our new method to the registration of dynamic lung CT volumes with simulated contrast. Experimental results show the advantages of this technique compared to standard mutual information.</description><identifier>ISSN: 1945-7928</identifier><identifier>ISBN: 145771857X</identifier><identifier>ISBN: 9781457718571</identifier><identifier>EISSN: 1945-8452</identifier><identifier>EISBN: 9781457718588</identifier><identifier>EISBN: 9781457718564</identifier><identifier>EISBN: 1457718588</identifier><identifier>EISBN: 1457718561</identifier><identifier>DOI: 10.1109/ISBI.2012.6235849</identifier><language>eng</language><publisher>IEEE</publisher><subject>cluster trees ; Computed tomography ; Histograms ; Image registration ; Joints ; Lungs ; multimodal image registration ; Mutual information</subject><ispartof>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012, p.1471-1474</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6235849$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6235849$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Heinrich, M. P.</creatorcontrib><creatorcontrib>Jenkinson, M.</creatorcontrib><creatorcontrib>Brady, M.</creatorcontrib><creatorcontrib>Schnabel, J. A.</creatorcontrib><title>Textural mutual information based on cluster trees for multimodal deformable registration</title><title>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</title><addtitle>ISBI</addtitle><description>Mutual information (MI) has been widely used in image analysis tasks such as feature selection and image registration. In particular, it is the most widely used similarity measure for intensity based registration of multimodal images. However, a major drawback of MI is that it does not take the spatial neighbourhood into account. An effective way of incorporating spatial information could be of great benefit in a number of challenging applications. We propose the use of cluster trees to efficiently incorporate textural information from the local neighbourhood of a voxel into the computation of MI, while at the same time limiting the number of bins used to represent this higher-order information. This new similarity metric is optimised using a Markov random field (MRF). We apply our new method to the registration of dynamic lung CT volumes with simulated contrast. Experimental results show the advantages of this technique compared to standard mutual information.</description><subject>cluster trees</subject><subject>Computed tomography</subject><subject>Histograms</subject><subject>Image registration</subject><subject>Joints</subject><subject>Lungs</subject><subject>multimodal image registration</subject><subject>Mutual information</subject><issn>1945-7928</issn><issn>1945-8452</issn><isbn>145771857X</isbn><isbn>9781457718571</isbn><isbn>9781457718588</isbn><isbn>9781457718564</isbn><isbn>1457718588</isbn><isbn>1457718561</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kEtLxDAUheMLHMf-AHHTP9Axz95kqYOPwoALR9DVkLY3EmmnkqSg_94y1rM5B8757uIScsXoijFqbqqXu2rFKeOrkgulpTkimQHNpAJgWml9TBbMSFVoqfgJufgv4O10LsBwfU6yGD_pJJBSULkg71v8TmOwXd6PaZzM790Qepv8sM9rG7HNp9B0Y0wY8hQQYz4NpnWXfD-0E9Higag7zAN--JjCgb4kZ852EbPZl-T14X67fio2z4_V-nZTeAYqFVooVsuWGW6VYKVrwTWgqHDcApbIRQ0GHFIluUMUULYOGtQKHRdCs0YsyfXfXY-Iu6_gext-dvOXxC-Jllj9</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Heinrich, M. P.</creator><creator>Jenkinson, M.</creator><creator>Brady, M.</creator><creator>Schnabel, J. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Textural mutual information based on cluster trees for multimodal deformable registration</title><author>Heinrich, M. P. ; Jenkinson, M. ; Brady, M. ; Schnabel, J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8351b4d192a5316fd7fc7503f2a7e6e23b797fe0542fee376df7ce85ef23381c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>cluster trees</topic><topic>Computed tomography</topic><topic>Histograms</topic><topic>Image registration</topic><topic>Joints</topic><topic>Lungs</topic><topic>multimodal image registration</topic><topic>Mutual information</topic><toplevel>online_resources</toplevel><creatorcontrib>Heinrich, M. P.</creatorcontrib><creatorcontrib>Jenkinson, M.</creatorcontrib><creatorcontrib>Brady, M.</creatorcontrib><creatorcontrib>Schnabel, J. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heinrich, M. P.</au><au>Jenkinson, M.</au><au>Brady, M.</au><au>Schnabel, J. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Textural mutual information based on cluster trees for multimodal deformable registration</atitle><btitle>2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)</btitle><stitle>ISBI</stitle><date>2012-05</date><risdate>2012</risdate><spage>1471</spage><epage>1474</epage><pages>1471-1474</pages><issn>1945-7928</issn><eissn>1945-8452</eissn><isbn>145771857X</isbn><isbn>9781457718571</isbn><eisbn>9781457718588</eisbn><eisbn>9781457718564</eisbn><eisbn>1457718588</eisbn><eisbn>1457718561</eisbn><abstract>Mutual information (MI) has been widely used in image analysis tasks such as feature selection and image registration. In particular, it is the most widely used similarity measure for intensity based registration of multimodal images. However, a major drawback of MI is that it does not take the spatial neighbourhood into account. An effective way of incorporating spatial information could be of great benefit in a number of challenging applications. We propose the use of cluster trees to efficiently incorporate textural information from the local neighbourhood of a voxel into the computation of MI, while at the same time limiting the number of bins used to represent this higher-order information. This new similarity metric is optimised using a Markov random field (MRF). We apply our new method to the registration of dynamic lung CT volumes with simulated contrast. Experimental results show the advantages of this technique compared to standard mutual information.</abstract><pub>IEEE</pub><doi>10.1109/ISBI.2012.6235849</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7928
ispartof 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012, p.1471-1474
issn 1945-7928
1945-8452
language eng
recordid cdi_ieee_primary_6235849
source IEEE Electronic Library (IEL) Conference Proceedings
subjects cluster trees
Computed tomography
Histograms
Image registration
Joints
Lungs
multimodal image registration
Mutual information
title Textural mutual information based on cluster trees for multimodal deformable registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Textural%20mutual%20information%20based%20on%20cluster%20trees%20for%20multimodal%20deformable%20registration&rft.btitle=2012%209th%20IEEE%20International%20Symposium%20on%20Biomedical%20Imaging%20(ISBI)&rft.au=Heinrich,%20M.%20P.&rft.date=2012-05&rft.spage=1471&rft.epage=1474&rft.pages=1471-1474&rft.issn=1945-7928&rft.eissn=1945-8452&rft.isbn=145771857X&rft.isbn_list=9781457718571&rft_id=info:doi/10.1109/ISBI.2012.6235849&rft_dat=%3Cieee_6IE%3E6235849%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457718588&rft.eisbn_list=9781457718564&rft.eisbn_list=1457718588&rft.eisbn_list=1457718561&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6235849&rfr_iscdi=true