Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea

Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiuli Liao, Honghui Huang, Ming Dai, Zhanhui Qi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 206
container_issue
container_start_page 203
container_title
container_volume
creator Xiuli Liao
Honghui Huang
Ming Dai
Zhanhui Qi
description Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step.
doi_str_mv 10.1109/ICNC.2012.6234720
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6234720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6234720</ieee_id><sourcerecordid>6234720</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ae95968575aac05f220290672e624087d608cb2c13858f12ce1f1a839e628f4b3</originalsourceid><addsrcrecordid>eNpVkE1OwzAQRo0Aiar0AIjNHIAU24ljewnhr1IFi3ZfTZNxY0iTyklBOQK3JoVu-DZPT6MZaT7GrgSfCsHt7Sx7zaaSCzlNZZxoyU_YxGojEqW1FLE0p_-cJ2dsJIXSkVVKXbBJ277zIVoJkyYj9p2VVROaXdlXVYSwC1T4vPP1BtbYUgFNDRg673zusYKa9uEX3VcTPsA1AbYYfE2Q44bA-bYEh2F72MdACL6GAnc0aN580kEfsEe4x_4GFs2-KyErfY2wILxk5w6rliZHjtny6XGZvUTzt-dZdjePvOVdhGSVTY3SCjHnyknJpeWplpTKhBtdpNzka5mL2CjjhMxJOIEmtsPcuGQdj9n131lPRKtd8MMD_erYZfwD0iBlaw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiuli Liao ; Honghui Huang ; Ming Dai ; Zhanhui Qi</creator><creatorcontrib>Xiuli Liao ; Honghui Huang ; Ming Dai ; Zhanhui Qi</creatorcontrib><description>Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9781457721304</identifier><identifier>ISBN: 1457721309</identifier><identifier>EISBN: 9781457721328</identifier><identifier>EISBN: 1457721325</identifier><identifier>EISBN: 9781457721335</identifier><identifier>EISBN: 1457721333</identifier><identifier>DOI: 10.1109/ICNC.2012.6234720</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; BP artificial neural network ; chlorophyll-a ; Data models ; Linear regression ; marine cage fish farming area ; Mathematical model ; predict ; Predictive models ; Tides</subject><ispartof>2012 8th International Conference on Natural Computation, 2012, p.203-206</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6234720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6234720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiuli Liao</creatorcontrib><creatorcontrib>Honghui Huang</creatorcontrib><creatorcontrib>Ming Dai</creatorcontrib><creatorcontrib>Zhanhui Qi</creatorcontrib><title>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</title><title>2012 8th International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step.</description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>BP artificial neural network</subject><subject>chlorophyll-a</subject><subject>Data models</subject><subject>Linear regression</subject><subject>marine cage fish farming area</subject><subject>Mathematical model</subject><subject>predict</subject><subject>Predictive models</subject><subject>Tides</subject><issn>2157-9555</issn><isbn>9781457721304</isbn><isbn>1457721309</isbn><isbn>9781457721328</isbn><isbn>1457721325</isbn><isbn>9781457721335</isbn><isbn>1457721333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1OwzAQRo0Aiar0AIjNHIAU24ljewnhr1IFi3ZfTZNxY0iTyklBOQK3JoVu-DZPT6MZaT7GrgSfCsHt7Sx7zaaSCzlNZZxoyU_YxGojEqW1FLE0p_-cJ2dsJIXSkVVKXbBJ277zIVoJkyYj9p2VVROaXdlXVYSwC1T4vPP1BtbYUgFNDRg673zusYKa9uEX3VcTPsA1AbYYfE2Q44bA-bYEh2F72MdACL6GAnc0aN580kEfsEe4x_4GFs2-KyErfY2wILxk5w6rliZHjtny6XGZvUTzt-dZdjePvOVdhGSVTY3SCjHnyknJpeWplpTKhBtdpNzka5mL2CjjhMxJOIEmtsPcuGQdj9n131lPRKtd8MMD_erYZfwD0iBlaw</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Xiuli Liao</creator><creator>Honghui Huang</creator><creator>Ming Dai</creator><creator>Zhanhui Qi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</title><author>Xiuli Liao ; Honghui Huang ; Ming Dai ; Zhanhui Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ae95968575aac05f220290672e624087d608cb2c13858f12ce1f1a839e628f4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>BP artificial neural network</topic><topic>chlorophyll-a</topic><topic>Data models</topic><topic>Linear regression</topic><topic>marine cage fish farming area</topic><topic>Mathematical model</topic><topic>predict</topic><topic>Predictive models</topic><topic>Tides</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiuli Liao</creatorcontrib><creatorcontrib>Honghui Huang</creatorcontrib><creatorcontrib>Ming Dai</creatorcontrib><creatorcontrib>Zhanhui Qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiuli Liao</au><au>Honghui Huang</au><au>Ming Dai</au><au>Zhanhui Qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</atitle><btitle>2012 8th International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2012-05</date><risdate>2012</risdate><spage>203</spage><epage>206</epage><pages>203-206</pages><issn>2157-9555</issn><isbn>9781457721304</isbn><isbn>1457721309</isbn><eisbn>9781457721328</eisbn><eisbn>1457721325</eisbn><eisbn>9781457721335</eisbn><eisbn>1457721333</eisbn><abstract>Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2012.6234720</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2012 8th International Conference on Natural Computation, 2012, p.203-206
issn 2157-9555
language eng
recordid cdi_ieee_primary_6234720
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biological system modeling
BP artificial neural network
chlorophyll-a
Data models
Linear regression
marine cage fish farming area
Mathematical model
predict
Predictive models
Tides
title Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chlorophyll-a%20predicting%20based%20on%20artificial%20neural%20network%20for%20marine%20cage%20fish%20farming%20area%20in%20dapeng%20cove%20in%20Daya%20Bay,%20South%20China%20Sea&rft.btitle=2012%208th%20International%20Conference%20on%20Natural%20Computation&rft.au=Xiuli%20Liao&rft.date=2012-05&rft.spage=203&rft.epage=206&rft.pages=203-206&rft.issn=2157-9555&rft.isbn=9781457721304&rft.isbn_list=1457721309&rft_id=info:doi/10.1109/ICNC.2012.6234720&rft_dat=%3Cieee_6IE%3E6234720%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457721328&rft.eisbn_list=1457721325&rft.eisbn_list=9781457721335&rft.eisbn_list=1457721333&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6234720&rfr_iscdi=true