Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea
Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP n...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | |
container_start_page | 203 |
container_title | |
container_volume | |
creator | Xiuli Liao Honghui Huang Ming Dai Zhanhui Qi |
description | Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step. |
doi_str_mv | 10.1109/ICNC.2012.6234720 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6234720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6234720</ieee_id><sourcerecordid>6234720</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ae95968575aac05f220290672e624087d608cb2c13858f12ce1f1a839e628f4b3</originalsourceid><addsrcrecordid>eNpVkE1OwzAQRo0Aiar0AIjNHIAU24ljewnhr1IFi3ZfTZNxY0iTyklBOQK3JoVu-DZPT6MZaT7GrgSfCsHt7Sx7zaaSCzlNZZxoyU_YxGojEqW1FLE0p_-cJ2dsJIXSkVVKXbBJ277zIVoJkyYj9p2VVROaXdlXVYSwC1T4vPP1BtbYUgFNDRg673zusYKa9uEX3VcTPsA1AbYYfE2Q44bA-bYEh2F72MdACL6GAnc0aN580kEfsEe4x_4GFs2-KyErfY2wILxk5w6rliZHjtny6XGZvUTzt-dZdjePvOVdhGSVTY3SCjHnyknJpeWplpTKhBtdpNzka5mL2CjjhMxJOIEmtsPcuGQdj9n131lPRKtd8MMD_erYZfwD0iBlaw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiuli Liao ; Honghui Huang ; Ming Dai ; Zhanhui Qi</creator><creatorcontrib>Xiuli Liao ; Honghui Huang ; Ming Dai ; Zhanhui Qi</creatorcontrib><description>Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9781457721304</identifier><identifier>ISBN: 1457721309</identifier><identifier>EISBN: 9781457721328</identifier><identifier>EISBN: 1457721325</identifier><identifier>EISBN: 9781457721335</identifier><identifier>EISBN: 1457721333</identifier><identifier>DOI: 10.1109/ICNC.2012.6234720</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biological system modeling ; BP artificial neural network ; chlorophyll-a ; Data models ; Linear regression ; marine cage fish farming area ; Mathematical model ; predict ; Predictive models ; Tides</subject><ispartof>2012 8th International Conference on Natural Computation, 2012, p.203-206</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6234720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6234720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiuli Liao</creatorcontrib><creatorcontrib>Honghui Huang</creatorcontrib><creatorcontrib>Ming Dai</creatorcontrib><creatorcontrib>Zhanhui Qi</creatorcontrib><title>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</title><title>2012 8th International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step.</description><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>BP artificial neural network</subject><subject>chlorophyll-a</subject><subject>Data models</subject><subject>Linear regression</subject><subject>marine cage fish farming area</subject><subject>Mathematical model</subject><subject>predict</subject><subject>Predictive models</subject><subject>Tides</subject><issn>2157-9555</issn><isbn>9781457721304</isbn><isbn>1457721309</isbn><isbn>9781457721328</isbn><isbn>1457721325</isbn><isbn>9781457721335</isbn><isbn>1457721333</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1OwzAQRo0Aiar0AIjNHIAU24ljewnhr1IFi3ZfTZNxY0iTyklBOQK3JoVu-DZPT6MZaT7GrgSfCsHt7Sx7zaaSCzlNZZxoyU_YxGojEqW1FLE0p_-cJ2dsJIXSkVVKXbBJ277zIVoJkyYj9p2VVROaXdlXVYSwC1T4vPP1BtbYUgFNDRg673zusYKa9uEX3VcTPsA1AbYYfE2Q44bA-bYEh2F72MdACL6GAnc0aN580kEfsEe4x_4GFs2-KyErfY2wILxk5w6rliZHjtny6XGZvUTzt-dZdjePvOVdhGSVTY3SCjHnyknJpeWplpTKhBtdpNzka5mL2CjjhMxJOIEmtsPcuGQdj9n131lPRKtd8MMD_erYZfwD0iBlaw</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Xiuli Liao</creator><creator>Honghui Huang</creator><creator>Ming Dai</creator><creator>Zhanhui Qi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</title><author>Xiuli Liao ; Honghui Huang ; Ming Dai ; Zhanhui Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ae95968575aac05f220290672e624087d608cb2c13858f12ce1f1a839e628f4b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>BP artificial neural network</topic><topic>chlorophyll-a</topic><topic>Data models</topic><topic>Linear regression</topic><topic>marine cage fish farming area</topic><topic>Mathematical model</topic><topic>predict</topic><topic>Predictive models</topic><topic>Tides</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiuli Liao</creatorcontrib><creatorcontrib>Honghui Huang</creatorcontrib><creatorcontrib>Ming Dai</creatorcontrib><creatorcontrib>Zhanhui Qi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiuli Liao</au><au>Honghui Huang</au><au>Ming Dai</au><au>Zhanhui Qi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea</atitle><btitle>2012 8th International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2012-05</date><risdate>2012</risdate><spage>203</spage><epage>206</epage><pages>203-206</pages><issn>2157-9555</issn><isbn>9781457721304</isbn><isbn>1457721309</isbn><eisbn>9781457721328</eisbn><eisbn>1457721325</eisbn><eisbn>9781457721335</eisbn><eisbn>1457721333</eisbn><abstract>Base on the 201 groups of data that accepted in the last ten years, a 3 layer (3,8,1) BP artificial neural network model on quickly predicting chlorophyll-a concentration in marine cage fish farming area was established. The model was established in software MATLAB7.1 (MATTrix LABoratory) using BP network. Three field accurate measurement parameters (water temperature, pH, dissolved oxygen) was as the input variable and chlorophyll-a was the output in our model. In most condition the forecast results was closely to the actual data when using this model. Its prediction accuracy was significantly higher than the linear regression equation. For the reason that the data used in building model which has some question and the complexity of predicting chlorophyll-a content, there existed some error between forecast value and actual value when using this model in several sets of data. This article put forward the methods to consummate the model in the next step.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2012.6234720</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2157-9555 |
ispartof | 2012 8th International Conference on Natural Computation, 2012, p.203-206 |
issn | 2157-9555 |
language | eng |
recordid | cdi_ieee_primary_6234720 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial neural networks Biological system modeling BP artificial neural network chlorophyll-a Data models Linear regression marine cage fish farming area Mathematical model predict Predictive models Tides |
title | Chlorophyll-a predicting based on artificial neural network for marine cage fish farming area in dapeng cove in Daya Bay, South China Sea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A48%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chlorophyll-a%20predicting%20based%20on%20artificial%20neural%20network%20for%20marine%20cage%20fish%20farming%20area%20in%20dapeng%20cove%20in%20Daya%20Bay,%20South%20China%20Sea&rft.btitle=2012%208th%20International%20Conference%20on%20Natural%20Computation&rft.au=Xiuli%20Liao&rft.date=2012-05&rft.spage=203&rft.epage=206&rft.pages=203-206&rft.issn=2157-9555&rft.isbn=9781457721304&rft.isbn_list=1457721309&rft_id=info:doi/10.1109/ICNC.2012.6234720&rft_dat=%3Cieee_6IE%3E6234720%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457721328&rft.eisbn_list=1457721325&rft.eisbn_list=9781457721335&rft.eisbn_list=1457721333&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6234720&rfr_iscdi=true |