A quantitative algorithm for extracting generic basis of fuzzy association rules

Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sougui, I. B. A., Hidri, M. S., Touzi, A. G.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 23
container_title
container_volume
creator Sougui, I. B. A.
Hidri, M. S.
Touzi, A. G.
description Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators.
doi_str_mv 10.1109/FSKD.2012.6234087
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6234087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6234087</ieee_id><sourcerecordid>6234087</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a964412f43f7611a2267cda4d005b45925e2fb879c8e9121e207f482470b01dd3</originalsourceid><addsrcrecordid>eNpVkEFOwzAURI0QEqjkAIiNL5Dw_e3Y8bIqlCIqgUT3lZPYwShNwHYQ7empRDfMZvQW8xZDyA2DgjHQd8u35_sCgWEhkQuo1BnJtKqYkIoDIIfzf1yKS5LF-AHHqBIqIa_I65x-TWZIPpnkvy01fTcGn9531I2B2p8UTJP80NHODjb4htYm-khHR910OOypiXFs_HE7DjRMvY3X5MKZPtrs1DOyWT5sFqt8_fL4tJivc68h5UZLIRg6wZ2SjBlEqZrWiBagrEWpsbTo6krpprKaIbMIyokKhYIaWNvyGbn903pr7fYz-J0J--3pBv4LC_9QeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A quantitative algorithm for extracting generic basis of fuzzy association rules</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sougui, I. B. A. ; Hidri, M. S. ; Touzi, A. G.</creator><creatorcontrib>Sougui, I. B. A. ; Hidri, M. S. ; Touzi, A. G.</creatorcontrib><description>Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators.</description><identifier>ISBN: 9781467300254</identifier><identifier>ISBN: 146730025X</identifier><identifier>EISBN: 9781467300230</identifier><identifier>EISBN: 9781467300247</identifier><identifier>EISBN: 1467300241</identifier><identifier>EISBN: 1467300233</identifier><identifier>DOI: 10.1109/FSKD.2012.6234087</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; Context ; Fuzzy Association Rules ; Fuzzy Closed Itemsets ; Fuzzy Galois Lattice ; Fuzzy Minimal Generators ; Fuzzy sets ; Generators ; Itemsets</subject><ispartof>2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012, p.23-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6234087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6234087$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sougui, I. B. A.</creatorcontrib><creatorcontrib>Hidri, M. S.</creatorcontrib><creatorcontrib>Touzi, A. G.</creatorcontrib><title>A quantitative algorithm for extracting generic basis of fuzzy association rules</title><title>2012 9th International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators.</description><subject>Association rules</subject><subject>Context</subject><subject>Fuzzy Association Rules</subject><subject>Fuzzy Closed Itemsets</subject><subject>Fuzzy Galois Lattice</subject><subject>Fuzzy Minimal Generators</subject><subject>Fuzzy sets</subject><subject>Generators</subject><subject>Itemsets</subject><isbn>9781467300254</isbn><isbn>146730025X</isbn><isbn>9781467300230</isbn><isbn>9781467300247</isbn><isbn>1467300241</isbn><isbn>1467300233</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEFOwzAURI0QEqjkAIiNL5Dw_e3Y8bIqlCIqgUT3lZPYwShNwHYQ7empRDfMZvQW8xZDyA2DgjHQd8u35_sCgWEhkQuo1BnJtKqYkIoDIIfzf1yKS5LF-AHHqBIqIa_I65x-TWZIPpnkvy01fTcGn9531I2B2p8UTJP80NHODjb4htYm-khHR910OOypiXFs_HE7DjRMvY3X5MKZPtrs1DOyWT5sFqt8_fL4tJivc68h5UZLIRg6wZ2SjBlEqZrWiBagrEWpsbTo6krpprKaIbMIyokKhYIaWNvyGbn903pr7fYz-J0J--3pBv4LC_9QeQ</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Sougui, I. B. A.</creator><creator>Hidri, M. S.</creator><creator>Touzi, A. G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>A quantitative algorithm for extracting generic basis of fuzzy association rules</title><author>Sougui, I. B. A. ; Hidri, M. S. ; Touzi, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a964412f43f7611a2267cda4d005b45925e2fb879c8e9121e207f482470b01dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Association rules</topic><topic>Context</topic><topic>Fuzzy Association Rules</topic><topic>Fuzzy Closed Itemsets</topic><topic>Fuzzy Galois Lattice</topic><topic>Fuzzy Minimal Generators</topic><topic>Fuzzy sets</topic><topic>Generators</topic><topic>Itemsets</topic><toplevel>online_resources</toplevel><creatorcontrib>Sougui, I. B. A.</creatorcontrib><creatorcontrib>Hidri, M. S.</creatorcontrib><creatorcontrib>Touzi, A. G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sougui, I. B. A.</au><au>Hidri, M. S.</au><au>Touzi, A. G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A quantitative algorithm for extracting generic basis of fuzzy association rules</atitle><btitle>2012 9th International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2012-05</date><risdate>2012</risdate><spage>23</spage><epage>27</epage><pages>23-27</pages><isbn>9781467300254</isbn><isbn>146730025X</isbn><eisbn>9781467300230</eisbn><eisbn>9781467300247</eisbn><eisbn>1467300241</eisbn><eisbn>1467300233</eisbn><abstract>Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2012.6234087</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467300254
ispartof 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012, p.23-27
issn
language eng
recordid cdi_ieee_primary_6234087
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Association rules
Context
Fuzzy Association Rules
Fuzzy Closed Itemsets
Fuzzy Galois Lattice
Fuzzy Minimal Generators
Fuzzy sets
Generators
Itemsets
title A quantitative algorithm for extracting generic basis of fuzzy association rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20quantitative%20algorithm%20for%20extracting%20generic%20basis%20of%20fuzzy%20association%20rules&rft.btitle=2012%209th%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Sougui,%20I.%20B.%20A.&rft.date=2012-05&rft.spage=23&rft.epage=27&rft.pages=23-27&rft.isbn=9781467300254&rft.isbn_list=146730025X&rft_id=info:doi/10.1109/FSKD.2012.6234087&rft_dat=%3Cieee_6IE%3E6234087%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300230&rft.eisbn_list=9781467300247&rft.eisbn_list=1467300241&rft.eisbn_list=1467300233&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6234087&rfr_iscdi=true