A quantitative algorithm for extracting generic basis of fuzzy association rules
Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome thi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | |
container_start_page | 23 |
container_title | |
container_volume | |
creator | Sougui, I. B. A. Hidri, M. S. Touzi, A. G. |
description | Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators. |
doi_str_mv | 10.1109/FSKD.2012.6234087 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6234087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6234087</ieee_id><sourcerecordid>6234087</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a964412f43f7611a2267cda4d005b45925e2fb879c8e9121e207f482470b01dd3</originalsourceid><addsrcrecordid>eNpVkEFOwzAURI0QEqjkAIiNL5Dw_e3Y8bIqlCIqgUT3lZPYwShNwHYQ7empRDfMZvQW8xZDyA2DgjHQd8u35_sCgWEhkQuo1BnJtKqYkIoDIIfzf1yKS5LF-AHHqBIqIa_I65x-TWZIPpnkvy01fTcGn9531I2B2p8UTJP80NHODjb4htYm-khHR910OOypiXFs_HE7DjRMvY3X5MKZPtrs1DOyWT5sFqt8_fL4tJivc68h5UZLIRg6wZ2SjBlEqZrWiBagrEWpsbTo6krpprKaIbMIyokKhYIaWNvyGbn903pr7fYz-J0J--3pBv4LC_9QeQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A quantitative algorithm for extracting generic basis of fuzzy association rules</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sougui, I. B. A. ; Hidri, M. S. ; Touzi, A. G.</creator><creatorcontrib>Sougui, I. B. A. ; Hidri, M. S. ; Touzi, A. G.</creatorcontrib><description>Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators.</description><identifier>ISBN: 9781467300254</identifier><identifier>ISBN: 146730025X</identifier><identifier>EISBN: 9781467300230</identifier><identifier>EISBN: 9781467300247</identifier><identifier>EISBN: 1467300241</identifier><identifier>EISBN: 1467300233</identifier><identifier>DOI: 10.1109/FSKD.2012.6234087</identifier><language>eng</language><publisher>IEEE</publisher><subject>Association rules ; Context ; Fuzzy Association Rules ; Fuzzy Closed Itemsets ; Fuzzy Galois Lattice ; Fuzzy Minimal Generators ; Fuzzy sets ; Generators ; Itemsets</subject><ispartof>2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012, p.23-27</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6234087$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6234087$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sougui, I. B. A.</creatorcontrib><creatorcontrib>Hidri, M. S.</creatorcontrib><creatorcontrib>Touzi, A. G.</creatorcontrib><title>A quantitative algorithm for extracting generic basis of fuzzy association rules</title><title>2012 9th International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators.</description><subject>Association rules</subject><subject>Context</subject><subject>Fuzzy Association Rules</subject><subject>Fuzzy Closed Itemsets</subject><subject>Fuzzy Galois Lattice</subject><subject>Fuzzy Minimal Generators</subject><subject>Fuzzy sets</subject><subject>Generators</subject><subject>Itemsets</subject><isbn>9781467300254</isbn><isbn>146730025X</isbn><isbn>9781467300230</isbn><isbn>9781467300247</isbn><isbn>1467300241</isbn><isbn>1467300233</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEFOwzAURI0QEqjkAIiNL5Dw_e3Y8bIqlCIqgUT3lZPYwShNwHYQ7empRDfMZvQW8xZDyA2DgjHQd8u35_sCgWEhkQuo1BnJtKqYkIoDIIfzf1yKS5LF-AHHqBIqIa_I65x-TWZIPpnkvy01fTcGn9531I2B2p8UTJP80NHODjb4htYm-khHR910OOypiXFs_HE7DjRMvY3X5MKZPtrs1DOyWT5sFqt8_fL4tJivc68h5UZLIRg6wZ2SjBlEqZrWiBagrEWpsbTo6krpprKaIbMIyokKhYIaWNvyGbn903pr7fYz-J0J--3pBv4LC_9QeQ</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Sougui, I. B. A.</creator><creator>Hidri, M. S.</creator><creator>Touzi, A. G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>A quantitative algorithm for extracting generic basis of fuzzy association rules</title><author>Sougui, I. B. A. ; Hidri, M. S. ; Touzi, A. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a964412f43f7611a2267cda4d005b45925e2fb879c8e9121e207f482470b01dd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Association rules</topic><topic>Context</topic><topic>Fuzzy Association Rules</topic><topic>Fuzzy Closed Itemsets</topic><topic>Fuzzy Galois Lattice</topic><topic>Fuzzy Minimal Generators</topic><topic>Fuzzy sets</topic><topic>Generators</topic><topic>Itemsets</topic><toplevel>online_resources</toplevel><creatorcontrib>Sougui, I. B. A.</creatorcontrib><creatorcontrib>Hidri, M. S.</creatorcontrib><creatorcontrib>Touzi, A. G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore Digital Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sougui, I. B. A.</au><au>Hidri, M. S.</au><au>Touzi, A. G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A quantitative algorithm for extracting generic basis of fuzzy association rules</atitle><btitle>2012 9th International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2012-05</date><risdate>2012</risdate><spage>23</spage><epage>27</epage><pages>23-27</pages><isbn>9781467300254</isbn><isbn>146730025X</isbn><eisbn>9781467300230</eisbn><eisbn>9781467300247</eisbn><eisbn>1467300241</eisbn><eisbn>1467300233</eisbn><abstract>Fuzzy association rules (FAR) are well suited for the thinking of human subject and will help to increase the flexibility for supporting user in making decisions or designing the fuzzy systems. The classic extraction of associative rules suffers from a high number of generated rules. To overcome this problem, several studies have been developed to extract a generic subset of all rules. These generic databases are particularly suitable for dense contexts. The fuzzy contexts are highly dense contexts. So it is necessary to define a generic basis for all FAR. In this paper, we present a new algorithm for extracting FAR based on the extraction of generic basis of these last. This generic basis constitutes a compact nucleus of FAR which is based on the extraction of fuzzy closed itemsets and their corresponding fuzzy minimal generators.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2012.6234087</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467300254 |
ispartof | 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, 2012, p.23-27 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6234087 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Association rules Context Fuzzy Association Rules Fuzzy Closed Itemsets Fuzzy Galois Lattice Fuzzy Minimal Generators Fuzzy sets Generators Itemsets |
title | A quantitative algorithm for extracting generic basis of fuzzy association rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20quantitative%20algorithm%20for%20extracting%20generic%20basis%20of%20fuzzy%20association%20rules&rft.btitle=2012%209th%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Sougui,%20I.%20B.%20A.&rft.date=2012-05&rft.spage=23&rft.epage=27&rft.pages=23-27&rft.isbn=9781467300254&rft.isbn_list=146730025X&rft_id=info:doi/10.1109/FSKD.2012.6234087&rft_dat=%3Cieee_6IE%3E6234087%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467300230&rft.eisbn_list=9781467300247&rft.eisbn_list=1467300241&rft.eisbn_list=1467300233&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6234087&rfr_iscdi=true |