Nonlinear AlGaN/GaN HEMT model using multiple artificial neural networks

In this work, a complete nonlinear-transistor-model extraction-method is described. As a case study, the AlGaN/GaN High Electron Mobility Transistor manufactured on SiC substrate is modeled. The parasitic components model is proposed, and its extraction results are presented. Low- and high-frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Barmuta, P., Plonski, P., Czuba, K., Avolio, G., Schreurs, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue
container_start_page 462
container_title
container_volume 2
creator Barmuta, P.
Plonski, P.
Czuba, K.
Avolio, G.
Schreurs, D.
description In this work, a complete nonlinear-transistor-model extraction-method is described. As a case study, the AlGaN/GaN High Electron Mobility Transistor manufactured on SiC substrate is modeled. The parasitic components model is proposed, and its extraction results are presented. Low- and high-frequency large-signal measurement data are involved in order to produce multiple artificial neural networks. The network topologies of multilayer perceptron networks are established automatically. A complete learning procedure using back propagation algorithm is described. A good agreement between the measurement data and the model has been observed.
doi_str_mv 10.1109/MIKON.2012.6233556
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6233556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6233556</ieee_id><sourcerecordid>6233556</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f970554f11a19fde3b12008aa47b4cf215e4452f1d9eb4e4136508664f3ec3293</originalsourceid><addsrcrecordid>eNo1j8tKw0AYhUdEUGteQDfzAknnn0smsyylNsU23VRwVybJPzI6SUouiG9v0Xrg8PFtDhxCHoElAMzMd5uXfZFwBjxJuRBKpVfkHqTSGqTQb9ckMjr7dwW3JBqGD3aOVqB1dkfyomuDb9H2dBHWtpifS_PV7kCbrsZAp8G377SZwuhPAantR-985W2gLU79L8avrv8cHsiNs2HA6MIZeX1eHZZ5vN2vN8vFNvag1Rg7o5lS0gFYMK5GUQJnLLNW6lJWjoNCKRV3UBssJUoQqWJZmkonsBLciBl5-tv1iHg89b6x_ffxcl78AFyWTJM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear AlGaN/GaN HEMT model using multiple artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Barmuta, P. ; Plonski, P. ; Czuba, K. ; Avolio, G. ; Schreurs, D.</creator><creatorcontrib>Barmuta, P. ; Plonski, P. ; Czuba, K. ; Avolio, G. ; Schreurs, D.</creatorcontrib><description>In this work, a complete nonlinear-transistor-model extraction-method is described. As a case study, the AlGaN/GaN High Electron Mobility Transistor manufactured on SiC substrate is modeled. The parasitic components model is proposed, and its extraction results are presented. Low- and high-frequency large-signal measurement data are involved in order to produce multiple artificial neural networks. The network topologies of multilayer perceptron networks are established automatically. A complete learning procedure using back propagation algorithm is described. A good agreement between the measurement data and the model has been observed.</description><identifier>ISBN: 9781457714351</identifier><identifier>ISBN: 1457714353</identifier><identifier>EISBN: 145771437X</identifier><identifier>EISBN: 1457714388</identifier><identifier>EISBN: 9781457714375</identifier><identifier>EISBN: 9781457714382</identifier><identifier>DOI: 10.1109/MIKON.2012.6233556</identifier><language>eng</language><publisher>IEEE</publisher><subject>artificial neural network ; Decision support systems ; GaN HEMT ; nonlinear model ; temperature</subject><ispartof>2012 19th International Conference on Microwaves, Radar &amp; Wireless Communications, 2012, Vol.2, p.462-466</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6233556$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6233556$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Barmuta, P.</creatorcontrib><creatorcontrib>Plonski, P.</creatorcontrib><creatorcontrib>Czuba, K.</creatorcontrib><creatorcontrib>Avolio, G.</creatorcontrib><creatorcontrib>Schreurs, D.</creatorcontrib><title>Nonlinear AlGaN/GaN HEMT model using multiple artificial neural networks</title><title>2012 19th International Conference on Microwaves, Radar &amp; Wireless Communications</title><addtitle>MIKON</addtitle><description>In this work, a complete nonlinear-transistor-model extraction-method is described. As a case study, the AlGaN/GaN High Electron Mobility Transistor manufactured on SiC substrate is modeled. The parasitic components model is proposed, and its extraction results are presented. Low- and high-frequency large-signal measurement data are involved in order to produce multiple artificial neural networks. The network topologies of multilayer perceptron networks are established automatically. A complete learning procedure using back propagation algorithm is described. A good agreement between the measurement data and the model has been observed.</description><subject>artificial neural network</subject><subject>Decision support systems</subject><subject>GaN HEMT</subject><subject>nonlinear model</subject><subject>temperature</subject><isbn>9781457714351</isbn><isbn>1457714353</isbn><isbn>145771437X</isbn><isbn>1457714388</isbn><isbn>9781457714375</isbn><isbn>9781457714382</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKw0AYhUdEUGteQDfzAknnn0smsyylNsU23VRwVybJPzI6SUouiG9v0Xrg8PFtDhxCHoElAMzMd5uXfZFwBjxJuRBKpVfkHqTSGqTQb9ckMjr7dwW3JBqGD3aOVqB1dkfyomuDb9H2dBHWtpifS_PV7kCbrsZAp8G377SZwuhPAantR-985W2gLU79L8avrv8cHsiNs2HA6MIZeX1eHZZ5vN2vN8vFNvag1Rg7o5lS0gFYMK5GUQJnLLNW6lJWjoNCKRV3UBssJUoQqWJZmkonsBLciBl5-tv1iHg89b6x_ffxcl78AFyWTJM</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Barmuta, P.</creator><creator>Plonski, P.</creator><creator>Czuba, K.</creator><creator>Avolio, G.</creator><creator>Schreurs, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Nonlinear AlGaN/GaN HEMT model using multiple artificial neural networks</title><author>Barmuta, P. ; Plonski, P. ; Czuba, K. ; Avolio, G. ; Schreurs, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f970554f11a19fde3b12008aa47b4cf215e4452f1d9eb4e4136508664f3ec3293</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>artificial neural network</topic><topic>Decision support systems</topic><topic>GaN HEMT</topic><topic>nonlinear model</topic><topic>temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Barmuta, P.</creatorcontrib><creatorcontrib>Plonski, P.</creatorcontrib><creatorcontrib>Czuba, K.</creatorcontrib><creatorcontrib>Avolio, G.</creatorcontrib><creatorcontrib>Schreurs, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Barmuta, P.</au><au>Plonski, P.</au><au>Czuba, K.</au><au>Avolio, G.</au><au>Schreurs, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear AlGaN/GaN HEMT model using multiple artificial neural networks</atitle><btitle>2012 19th International Conference on Microwaves, Radar &amp; Wireless Communications</btitle><stitle>MIKON</stitle><date>2012-05</date><risdate>2012</risdate><volume>2</volume><spage>462</spage><epage>466</epage><pages>462-466</pages><isbn>9781457714351</isbn><isbn>1457714353</isbn><eisbn>145771437X</eisbn><eisbn>1457714388</eisbn><eisbn>9781457714375</eisbn><eisbn>9781457714382</eisbn><abstract>In this work, a complete nonlinear-transistor-model extraction-method is described. As a case study, the AlGaN/GaN High Electron Mobility Transistor manufactured on SiC substrate is modeled. The parasitic components model is proposed, and its extraction results are presented. Low- and high-frequency large-signal measurement data are involved in order to produce multiple artificial neural networks. The network topologies of multilayer perceptron networks are established automatically. A complete learning procedure using back propagation algorithm is described. A good agreement between the measurement data and the model has been observed.</abstract><pub>IEEE</pub><doi>10.1109/MIKON.2012.6233556</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457714351
ispartof 2012 19th International Conference on Microwaves, Radar & Wireless Communications, 2012, Vol.2, p.462-466
issn
language eng
recordid cdi_ieee_primary_6233556
source IEEE Electronic Library (IEL) Conference Proceedings
subjects artificial neural network
Decision support systems
GaN HEMT
nonlinear model
temperature
title Nonlinear AlGaN/GaN HEMT model using multiple artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A18%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20AlGaN/GaN%20HEMT%20model%20using%20multiple%20artificial%20neural%20networks&rft.btitle=2012%2019th%20International%20Conference%20on%20Microwaves,%20Radar%20&%20Wireless%20Communications&rft.au=Barmuta,%20P.&rft.date=2012-05&rft.volume=2&rft.spage=462&rft.epage=466&rft.pages=462-466&rft.isbn=9781457714351&rft.isbn_list=1457714353&rft_id=info:doi/10.1109/MIKON.2012.6233556&rft_dat=%3Cieee_6IE%3E6233556%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=145771437X&rft.eisbn_list=1457714388&rft.eisbn_list=9781457714375&rft.eisbn_list=9781457714382&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6233556&rfr_iscdi=true