Human activity recognition using inertial sensors with invariance to sensor orientation
This work deals with the task of human daily activity recognition using miniature inertial sensors. The proposed method reduces sensitivity to the position and orientation of the sensor on the body, which is inherent in traditional methods, by transforming the observed signals to a "virtual&quo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Florentino-Liano, B. O'Mahony, N. Artes-Rodriguez, A. |
description | This work deals with the task of human daily activity recognition using miniature inertial sensors. The proposed method reduces sensitivity to the position and orientation of the sensor on the body, which is inherent in traditional methods, by transforming the observed signals to a "virtual" sensor orientation. By means of this computationally low-cost transform, the inputs to the classification algorithm are made invariant to sensor orientation, despite the signals being recorded from arbitrary sensor placements. Classification results show that improved performance, in terms of both precision and recall, is achieved with the transformed signals, relative to classification using raw sensor signals, and the algorithm performs competitively compared to the state-of-the-art. Activity recognition using data from a sensor with completely unknown orientation is shown to perform very well over a long term recording in a real-life setting. |
doi_str_mv | 10.1109/CIP.2012.6232914 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6232914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232914</ieee_id><sourcerecordid>6232914</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-bc651590141cb916909e8d84cf5733f48e17c4654b450e7894c0e75be59ceef63</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhOMXWOveBS_5A1vz7ubzKIvaQkEPBY8lG9-tkTYrSVrpv3fF1dPAPMwwDCE3wGYAzNw1i5dZxaCayaquDPATUhilgUtVg1YSTslkAKoEafQZufoDypz_AwWXpEjpgzEGTAsh2YS8zvc7G6h12R98PtKIrt8En30f6D75sKE-YMzebmnCkPqY6JfP74N7sNHb4JDmfkS0jx5Dtj_ha3LR2W3CYtQpWT0-rJp5uXx-WjT3y9IblsvWSQHCMODgWjNMZwb1m-auE6quO64RlONS8JYLhkob7gYRLQrjEDtZT8ntb61HxPVn9Dsbj-vxovobsURXAQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Human activity recognition using inertial sensors with invariance to sensor orientation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Florentino-Liano, B. ; O'Mahony, N. ; Artes-Rodriguez, A.</creator><creatorcontrib>Florentino-Liano, B. ; O'Mahony, N. ; Artes-Rodriguez, A.</creatorcontrib><description>This work deals with the task of human daily activity recognition using miniature inertial sensors. The proposed method reduces sensitivity to the position and orientation of the sensor on the body, which is inherent in traditional methods, by transforming the observed signals to a "virtual" sensor orientation. By means of this computationally low-cost transform, the inputs to the classification algorithm are made invariant to sensor orientation, despite the signals being recorded from arbitrary sensor placements. Classification results show that improved performance, in terms of both precision and recall, is achieved with the transformed signals, relative to classification using raw sensor signals, and the algorithm performs competitively compared to the state-of-the-art. Activity recognition using data from a sensor with completely unknown orientation is shown to perform very well over a long term recording in a real-life setting.</description><identifier>ISSN: 2327-1671</identifier><identifier>ISBN: 1467318779</identifier><identifier>ISBN: 9781467318778</identifier><identifier>EISSN: 2327-1698</identifier><identifier>EISBN: 9781467318761</identifier><identifier>EISBN: 1467318760</identifier><identifier>EISBN: 9781467318785</identifier><identifier>EISBN: 1467318787</identifier><identifier>DOI: 10.1109/CIP.2012.6232914</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Accelerometers ; Gyroscopes ; Hidden Markov models ; Legged locomotion ; Sensors ; Training</subject><ispartof>2012 3rd International Workshop on Cognitive Information Processing (CIP), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Florentino-Liano, B.</creatorcontrib><creatorcontrib>O'Mahony, N.</creatorcontrib><creatorcontrib>Artes-Rodriguez, A.</creatorcontrib><title>Human activity recognition using inertial sensors with invariance to sensor orientation</title><title>2012 3rd International Workshop on Cognitive Information Processing (CIP)</title><addtitle>CIP</addtitle><description>This work deals with the task of human daily activity recognition using miniature inertial sensors. The proposed method reduces sensitivity to the position and orientation of the sensor on the body, which is inherent in traditional methods, by transforming the observed signals to a "virtual" sensor orientation. By means of this computationally low-cost transform, the inputs to the classification algorithm are made invariant to sensor orientation, despite the signals being recorded from arbitrary sensor placements. Classification results show that improved performance, in terms of both precision and recall, is achieved with the transformed signals, relative to classification using raw sensor signals, and the algorithm performs competitively compared to the state-of-the-art. Activity recognition using data from a sensor with completely unknown orientation is shown to perform very well over a long term recording in a real-life setting.</description><subject>Acceleration</subject><subject>Accelerometers</subject><subject>Gyroscopes</subject><subject>Hidden Markov models</subject><subject>Legged locomotion</subject><subject>Sensors</subject><subject>Training</subject><issn>2327-1671</issn><issn>2327-1698</issn><isbn>1467318779</isbn><isbn>9781467318778</isbn><isbn>9781467318761</isbn><isbn>1467318760</isbn><isbn>9781467318785</isbn><isbn>1467318787</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEYhOMXWOveBS_5A1vz7ubzKIvaQkEPBY8lG9-tkTYrSVrpv3fF1dPAPMwwDCE3wGYAzNw1i5dZxaCayaquDPATUhilgUtVg1YSTslkAKoEafQZufoDypz_AwWXpEjpgzEGTAsh2YS8zvc7G6h12R98PtKIrt8En30f6D75sKE-YMzebmnCkPqY6JfP74N7sNHb4JDmfkS0jx5Dtj_ha3LR2W3CYtQpWT0-rJp5uXx-WjT3y9IblsvWSQHCMODgWjNMZwb1m-auE6quO64RlONS8JYLhkob7gYRLQrjEDtZT8ntb61HxPVn9Dsbj-vxovobsURXAQ</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Florentino-Liano, B.</creator><creator>O'Mahony, N.</creator><creator>Artes-Rodriguez, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Human activity recognition using inertial sensors with invariance to sensor orientation</title><author>Florentino-Liano, B. ; O'Mahony, N. ; Artes-Rodriguez, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-bc651590141cb916909e8d84cf5733f48e17c4654b450e7894c0e75be59ceef63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Accelerometers</topic><topic>Gyroscopes</topic><topic>Hidden Markov models</topic><topic>Legged locomotion</topic><topic>Sensors</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Florentino-Liano, B.</creatorcontrib><creatorcontrib>O'Mahony, N.</creatorcontrib><creatorcontrib>Artes-Rodriguez, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Florentino-Liano, B.</au><au>O'Mahony, N.</au><au>Artes-Rodriguez, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Human activity recognition using inertial sensors with invariance to sensor orientation</atitle><btitle>2012 3rd International Workshop on Cognitive Information Processing (CIP)</btitle><stitle>CIP</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2327-1671</issn><eissn>2327-1698</eissn><isbn>1467318779</isbn><isbn>9781467318778</isbn><eisbn>9781467318761</eisbn><eisbn>1467318760</eisbn><eisbn>9781467318785</eisbn><eisbn>1467318787</eisbn><abstract>This work deals with the task of human daily activity recognition using miniature inertial sensors. The proposed method reduces sensitivity to the position and orientation of the sensor on the body, which is inherent in traditional methods, by transforming the observed signals to a "virtual" sensor orientation. By means of this computationally low-cost transform, the inputs to the classification algorithm are made invariant to sensor orientation, despite the signals being recorded from arbitrary sensor placements. Classification results show that improved performance, in terms of both precision and recall, is achieved with the transformed signals, relative to classification using raw sensor signals, and the algorithm performs competitively compared to the state-of-the-art. Activity recognition using data from a sensor with completely unknown orientation is shown to perform very well over a long term recording in a real-life setting.</abstract><pub>IEEE</pub><doi>10.1109/CIP.2012.6232914</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-1671 |
ispartof | 2012 3rd International Workshop on Cognitive Information Processing (CIP), 2012, p.1-6 |
issn | 2327-1671 2327-1698 |
language | eng |
recordid | cdi_ieee_primary_6232914 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Accelerometers Gyroscopes Hidden Markov models Legged locomotion Sensors Training |
title | Human activity recognition using inertial sensors with invariance to sensor orientation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A18%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Human%20activity%20recognition%20using%20inertial%20sensors%20with%20invariance%20to%20sensor%20orientation&rft.btitle=2012%203rd%20International%20Workshop%20on%20Cognitive%20Information%20Processing%20(CIP)&rft.au=Florentino-Liano,%20B.&rft.date=2012-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2327-1671&rft.eissn=2327-1698&rft.isbn=1467318779&rft.isbn_list=9781467318778&rft_id=info:doi/10.1109/CIP.2012.6232914&rft_dat=%3Cieee_6IE%3E6232914%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467318761&rft.eisbn_list=1467318760&rft.eisbn_list=9781467318785&rft.eisbn_list=1467318787&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232914&rfr_iscdi=true |