Detection, classification and tracking of moving objects in a 3D environment
In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic env...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 807 |
---|---|
container_issue | |
container_start_page | 802 |
container_title | |
container_volume | |
creator | Azim, Asma Aycard, Olivier |
description | In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors. |
doi_str_mv | 10.1109/IVS.2012.6232303 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6232303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232303</ieee_id><sourcerecordid>6232303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-f4223812f0915c786c4444eec34e88f22c875dc7e20e5a1e7722880770b802903</originalsourceid><addsrcrecordid>eNo1UMtOwzAQNC-JtPSOxMUfQMLu2omdI2p5VIrEgce1ct01cmkSlESV-HsClLnMjGZ3DiPEJUKGCOXN8u05I0DKClKkQB2JCerCKEI0xbFIqNCUGkJ9Imalsf9ZaU9FgqXCFHJrzsWk77cAeU6EiagWPLAfYttcS79zfR9D9O7HS9ds5NA5_xGbd9kGWbf7X7Xejg-9jOOFVAvJzT52bVNzM1yIs-B2Pc8OPBWv93cv88e0enpYzm-r1BOoIQ2aSFmkACXm3tjC6xHMXmm2NhB5a_KNN0zAuUM2hshaMAbWFqgENRVXf72RmVefXaxd97U6rKK-Ack1T9M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection, classification and tracking of moving objects in a 3D environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azim, Asma ; Aycard, Olivier</creator><creatorcontrib>Azim, Asma ; Aycard, Olivier</creatorcontrib><description>In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 9781467321198</identifier><identifier>ISBN: 1467321192</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467321176</identifier><identifier>EISBN: 9781467321174</identifier><identifier>EISBN: 1467321184</identifier><identifier>EISBN: 9781467321181</identifier><identifier>DOI: 10.1109/IVS.2012.6232303</identifier><language>eng</language><publisher>IEEE</publisher><subject>Noise ; Octrees ; Simultaneous localization and mapping ; Tracking ; Vehicle dynamics ; Vehicles</subject><ispartof>2012 IEEE Intelligent Vehicles Symposium, 2012, p.802-807</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-f4223812f0915c786c4444eec34e88f22c875dc7e20e5a1e7722880770b802903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azim, Asma</creatorcontrib><creatorcontrib>Aycard, Olivier</creatorcontrib><title>Detection, classification and tracking of moving objects in a 3D environment</title><title>2012 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors.</description><subject>Noise</subject><subject>Octrees</subject><subject>Simultaneous localization and mapping</subject><subject>Tracking</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>9781467321198</isbn><isbn>1467321192</isbn><isbn>1467321176</isbn><isbn>9781467321174</isbn><isbn>1467321184</isbn><isbn>9781467321181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtOwzAQNC-JtPSOxMUfQMLu2omdI2p5VIrEgce1ct01cmkSlESV-HsClLnMjGZ3DiPEJUKGCOXN8u05I0DKClKkQB2JCerCKEI0xbFIqNCUGkJ9Imalsf9ZaU9FgqXCFHJrzsWk77cAeU6EiagWPLAfYttcS79zfR9D9O7HS9ds5NA5_xGbd9kGWbf7X7Xejg-9jOOFVAvJzT52bVNzM1yIs-B2Pc8OPBWv93cv88e0enpYzm-r1BOoIQ2aSFmkACXm3tjC6xHMXmm2NhB5a_KNN0zAuUM2hshaMAbWFqgENRVXf72RmVefXaxd97U6rKK-Ack1T9M</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Azim, Asma</creator><creator>Aycard, Olivier</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Detection, classification and tracking of moving objects in a 3D environment</title><author>Azim, Asma ; Aycard, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-f4223812f0915c786c4444eec34e88f22c875dc7e20e5a1e7722880770b802903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Noise</topic><topic>Octrees</topic><topic>Simultaneous localization and mapping</topic><topic>Tracking</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Azim, Asma</creatorcontrib><creatorcontrib>Aycard, Olivier</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azim, Asma</au><au>Aycard, Olivier</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection, classification and tracking of moving objects in a 3D environment</atitle><btitle>2012 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2012-06</date><risdate>2012</risdate><spage>802</spage><epage>807</epage><pages>802-807</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>9781467321198</isbn><isbn>1467321192</isbn><eisbn>1467321176</eisbn><eisbn>9781467321174</eisbn><eisbn>1467321184</eisbn><eisbn>9781467321181</eisbn><abstract>In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2012.6232303</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1931-0587 |
ispartof | 2012 IEEE Intelligent Vehicles Symposium, 2012, p.802-807 |
issn | 1931-0587 2642-7214 |
language | eng |
recordid | cdi_ieee_primary_6232303 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Noise Octrees Simultaneous localization and mapping Tracking Vehicle dynamics Vehicles |
title | Detection, classification and tracking of moving objects in a 3D environment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection,%20classification%20and%20tracking%20of%20moving%20objects%20in%20a%203D%20environment&rft.btitle=2012%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Azim,%20Asma&rft.date=2012-06&rft.spage=802&rft.epage=807&rft.pages=802-807&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=9781467321198&rft.isbn_list=1467321192&rft_id=info:doi/10.1109/IVS.2012.6232303&rft_dat=%3Cieee_6IE%3E6232303%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321176&rft.eisbn_list=9781467321174&rft.eisbn_list=1467321184&rft.eisbn_list=9781467321181&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232303&rfr_iscdi=true |