Detection, classification and tracking of moving objects in a 3D environment

In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Azim, Asma, Aycard, Olivier
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 807
container_issue
container_start_page 802
container_title
container_volume
creator Azim, Asma
Aycard, Olivier
description In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors.
doi_str_mv 10.1109/IVS.2012.6232303
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6232303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232303</ieee_id><sourcerecordid>6232303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-f4223812f0915c786c4444eec34e88f22c875dc7e20e5a1e7722880770b802903</originalsourceid><addsrcrecordid>eNo1UMtOwzAQNC-JtPSOxMUfQMLu2omdI2p5VIrEgce1ct01cmkSlESV-HsClLnMjGZ3DiPEJUKGCOXN8u05I0DKClKkQB2JCerCKEI0xbFIqNCUGkJ9Imalsf9ZaU9FgqXCFHJrzsWk77cAeU6EiagWPLAfYttcS79zfR9D9O7HS9ds5NA5_xGbd9kGWbf7X7Xejg-9jOOFVAvJzT52bVNzM1yIs-B2Pc8OPBWv93cv88e0enpYzm-r1BOoIQ2aSFmkACXm3tjC6xHMXmm2NhB5a_KNN0zAuUM2hshaMAbWFqgENRVXf72RmVefXaxd97U6rKK-Ack1T9M</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection, classification and tracking of moving objects in a 3D environment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Azim, Asma ; Aycard, Olivier</creator><creatorcontrib>Azim, Asma ; Aycard, Olivier</creatorcontrib><description>In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 9781467321198</identifier><identifier>ISBN: 1467321192</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467321176</identifier><identifier>EISBN: 9781467321174</identifier><identifier>EISBN: 1467321184</identifier><identifier>EISBN: 9781467321181</identifier><identifier>DOI: 10.1109/IVS.2012.6232303</identifier><language>eng</language><publisher>IEEE</publisher><subject>Noise ; Octrees ; Simultaneous localization and mapping ; Tracking ; Vehicle dynamics ; Vehicles</subject><ispartof>2012 IEEE Intelligent Vehicles Symposium, 2012, p.802-807</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-f4223812f0915c786c4444eec34e88f22c875dc7e20e5a1e7722880770b802903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232303$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232303$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Azim, Asma</creatorcontrib><creatorcontrib>Aycard, Olivier</creatorcontrib><title>Detection, classification and tracking of moving objects in a 3D environment</title><title>2012 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors.</description><subject>Noise</subject><subject>Octrees</subject><subject>Simultaneous localization and mapping</subject><subject>Tracking</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>9781467321198</isbn><isbn>1467321192</isbn><isbn>1467321176</isbn><isbn>9781467321174</isbn><isbn>1467321184</isbn><isbn>9781467321181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMtOwzAQNC-JtPSOxMUfQMLu2omdI2p5VIrEgce1ct01cmkSlESV-HsClLnMjGZ3DiPEJUKGCOXN8u05I0DKClKkQB2JCerCKEI0xbFIqNCUGkJ9Imalsf9ZaU9FgqXCFHJrzsWk77cAeU6EiagWPLAfYttcS79zfR9D9O7HS9ds5NA5_xGbd9kGWbf7X7Xejg-9jOOFVAvJzT52bVNzM1yIs-B2Pc8OPBWv93cv88e0enpYzm-r1BOoIQ2aSFmkACXm3tjC6xHMXmm2NhB5a_KNN0zAuUM2hshaMAbWFqgENRVXf72RmVefXaxd97U6rKK-Ack1T9M</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Azim, Asma</creator><creator>Aycard, Olivier</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Detection, classification and tracking of moving objects in a 3D environment</title><author>Azim, Asma ; Aycard, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-f4223812f0915c786c4444eec34e88f22c875dc7e20e5a1e7722880770b802903</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Noise</topic><topic>Octrees</topic><topic>Simultaneous localization and mapping</topic><topic>Tracking</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Azim, Asma</creatorcontrib><creatorcontrib>Aycard, Olivier</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Azim, Asma</au><au>Aycard, Olivier</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection, classification and tracking of moving objects in a 3D environment</atitle><btitle>2012 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2012-06</date><risdate>2012</risdate><spage>802</spage><epage>807</epage><pages>802-807</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>9781467321198</isbn><isbn>1467321192</isbn><eisbn>1467321176</eisbn><eisbn>9781467321174</eisbn><eisbn>1467321184</eisbn><eisbn>9781467321181</eisbn><abstract>In this paper, we present a framework based on 3D range data to solve the problem of simultaneous localization and mapping (SLAM) with detection and tracking of moving objects (DATMO) in dynamic environments. The basic idea is to use an octree based Occupancy Grid representation to model dynamic environment surrounding the vehicle and to detect moving objects based on inconsistencies between scans. The proposed method for the discrimination between moving and stationary objects without a priori knowledge of the targets is the main contribution of this paper. Moreover, the detected moving objects are classified and tracked using Global Nearest Neighbor (GNN) technique. The proposed method can be used in conjunction with any type of range sensors however we have demonstrated it using the data acquired from a Velodyne HDL-64E LIDAR sensor. The merit of our approach is that it allows for an efficient three dimensional representation of a dynamic environment, keeping in view the enormous amount of information provided by 3D range sensors.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2012.6232303</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-0587
ispartof 2012 IEEE Intelligent Vehicles Symposium, 2012, p.802-807
issn 1931-0587
2642-7214
language eng
recordid cdi_ieee_primary_6232303
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Noise
Octrees
Simultaneous localization and mapping
Tracking
Vehicle dynamics
Vehicles
title Detection, classification and tracking of moving objects in a 3D environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection,%20classification%20and%20tracking%20of%20moving%20objects%20in%20a%203D%20environment&rft.btitle=2012%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Azim,%20Asma&rft.date=2012-06&rft.spage=802&rft.epage=807&rft.pages=802-807&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=9781467321198&rft.isbn_list=1467321192&rft_id=info:doi/10.1109/IVS.2012.6232303&rft_dat=%3Cieee_6IE%3E6232303%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321176&rft.eisbn_list=9781467321174&rft.eisbn_list=1467321184&rft.eisbn_list=9781467321181&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232303&rfr_iscdi=true