360 Degree multi sensor fusion for static and dynamic obstacles

In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Schueler, Kai, Weiherer, Tobias, Bouzouraa, Essayed, Hofmann, Ulrich
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue
container_start_page 692
container_title
container_volume
creator Schueler, Kai
Weiherer, Tobias
Bouzouraa, Essayed
Hofmann, Ulrich
description In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown.
doi_str_mv 10.1109/IVS.2012.6232253
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6232253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232253</ieee_id><sourcerecordid>6232253</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1323-9e297855d2f56bc083b1c362182be64604317231a00333dd89936584add262033</originalsourceid><addsrcrecordid>eNo1kElrwzAUhNUN6qS5F3rRH7Cr954kS6dS0i0Q6KHLNciWXFS8FMs55N_X0PQ0HzMwDMPYNYgCQNjbzedbgQKw0EiIik7YAqQuCQFKfcoy1BLzEkGesZUtzX9mzTnLwBLkQpnyki1S-hZCKUTI2B1pwR_C1xgC7_btFHkKfRpG3uxTHHrezJgmN8Wau95zf-hdN_NQzWbdhnTFLhrXprA66pJ9PD2-r1_y7evzZn2_zSMQUm4DzouU8tgoXdXCUAU1aQSDVdBSC0lQIoETgoi8N9aSVkY671Hj7C3ZzV9vDCHsfsbYufGwOx5Bv5liShU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>360 Degree multi sensor fusion for static and dynamic obstacles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schueler, Kai ; Weiherer, Tobias ; Bouzouraa, Essayed ; Hofmann, Ulrich</creator><creatorcontrib>Schueler, Kai ; Weiherer, Tobias ; Bouzouraa, Essayed ; Hofmann, Ulrich</creatorcontrib><description>In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 9781467321198</identifier><identifier>ISBN: 1467321192</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467321176</identifier><identifier>EISBN: 9781467321174</identifier><identifier>EISBN: 1467321184</identifier><identifier>EISBN: 9781467321181</identifier><identifier>DOI: 10.1109/IVS.2012.6232253</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamics ; Laser modes ; Laser radar ; Measurement by laser beam ; Radar tracking ; Vehicle dynamics ; Vehicles</subject><ispartof>2012 IEEE Intelligent Vehicles Symposium, 2012, p.692-697</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232253$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schueler, Kai</creatorcontrib><creatorcontrib>Weiherer, Tobias</creatorcontrib><creatorcontrib>Bouzouraa, Essayed</creatorcontrib><creatorcontrib>Hofmann, Ulrich</creatorcontrib><title>360 Degree multi sensor fusion for static and dynamic obstacles</title><title>2012 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown.</description><subject>Dynamics</subject><subject>Laser modes</subject><subject>Laser radar</subject><subject>Measurement by laser beam</subject><subject>Radar tracking</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>9781467321198</isbn><isbn>1467321192</isbn><isbn>1467321176</isbn><isbn>9781467321174</isbn><isbn>1467321184</isbn><isbn>9781467321181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kElrwzAUhNUN6qS5F3rRH7Cr954kS6dS0i0Q6KHLNciWXFS8FMs55N_X0PQ0HzMwDMPYNYgCQNjbzedbgQKw0EiIik7YAqQuCQFKfcoy1BLzEkGesZUtzX9mzTnLwBLkQpnyki1S-hZCKUTI2B1pwR_C1xgC7_btFHkKfRpG3uxTHHrezJgmN8Wau95zf-hdN_NQzWbdhnTFLhrXprA66pJ9PD2-r1_y7evzZn2_zSMQUm4DzouU8tgoXdXCUAU1aQSDVdBSC0lQIoETgoi8N9aSVkY671Hj7C3ZzV9vDCHsfsbYufGwOx5Bv5liShU</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Schueler, Kai</creator><creator>Weiherer, Tobias</creator><creator>Bouzouraa, Essayed</creator><creator>Hofmann, Ulrich</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>360 Degree multi sensor fusion for static and dynamic obstacles</title><author>Schueler, Kai ; Weiherer, Tobias ; Bouzouraa, Essayed ; Hofmann, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1323-9e297855d2f56bc083b1c362182be64604317231a00333dd89936584add262033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dynamics</topic><topic>Laser modes</topic><topic>Laser radar</topic><topic>Measurement by laser beam</topic><topic>Radar tracking</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Schueler, Kai</creatorcontrib><creatorcontrib>Weiherer, Tobias</creatorcontrib><creatorcontrib>Bouzouraa, Essayed</creatorcontrib><creatorcontrib>Hofmann, Ulrich</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schueler, Kai</au><au>Weiherer, Tobias</au><au>Bouzouraa, Essayed</au><au>Hofmann, Ulrich</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>360 Degree multi sensor fusion for static and dynamic obstacles</atitle><btitle>2012 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2012-06</date><risdate>2012</risdate><spage>692</spage><epage>697</epage><pages>692-697</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>9781467321198</isbn><isbn>1467321192</isbn><eisbn>1467321176</eisbn><eisbn>9781467321174</eisbn><eisbn>1467321184</eisbn><eisbn>9781467321181</eisbn><abstract>In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2012.6232253</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-0587
ispartof 2012 IEEE Intelligent Vehicles Symposium, 2012, p.692-697
issn 1931-0587
2642-7214
language eng
recordid cdi_ieee_primary_6232253
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Dynamics
Laser modes
Laser radar
Measurement by laser beam
Radar tracking
Vehicle dynamics
Vehicles
title 360 Degree multi sensor fusion for static and dynamic obstacles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=360%20Degree%20multi%20sensor%20fusion%20for%20static%20and%20dynamic%20obstacles&rft.btitle=2012%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Schueler,%20Kai&rft.date=2012-06&rft.spage=692&rft.epage=697&rft.pages=692-697&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=9781467321198&rft.isbn_list=1467321192&rft_id=info:doi/10.1109/IVS.2012.6232253&rft_dat=%3Cieee_6IE%3E6232253%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321176&rft.eisbn_list=9781467321174&rft.eisbn_list=1467321184&rft.eisbn_list=9781467321181&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232253&rfr_iscdi=true