360 Degree multi sensor fusion for static and dynamic obstacles
In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi re...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 697 |
---|---|
container_issue | |
container_start_page | 692 |
container_title | |
container_volume | |
creator | Schueler, Kai Weiherer, Tobias Bouzouraa, Essayed Hofmann, Ulrich |
description | In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown. |
doi_str_mv | 10.1109/IVS.2012.6232253 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6232253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232253</ieee_id><sourcerecordid>6232253</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1323-9e297855d2f56bc083b1c362182be64604317231a00333dd89936584add262033</originalsourceid><addsrcrecordid>eNo1kElrwzAUhNUN6qS5F3rRH7Cr954kS6dS0i0Q6KHLNciWXFS8FMs55N_X0PQ0HzMwDMPYNYgCQNjbzedbgQKw0EiIik7YAqQuCQFKfcoy1BLzEkGesZUtzX9mzTnLwBLkQpnyki1S-hZCKUTI2B1pwR_C1xgC7_btFHkKfRpG3uxTHHrezJgmN8Wau95zf-hdN_NQzWbdhnTFLhrXprA66pJ9PD2-r1_y7evzZn2_zSMQUm4DzouU8tgoXdXCUAU1aQSDVdBSC0lQIoETgoi8N9aSVkY671Hj7C3ZzV9vDCHsfsbYufGwOx5Bv5liShU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>360 Degree multi sensor fusion for static and dynamic obstacles</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Schueler, Kai ; Weiherer, Tobias ; Bouzouraa, Essayed ; Hofmann, Ulrich</creator><creatorcontrib>Schueler, Kai ; Weiherer, Tobias ; Bouzouraa, Essayed ; Hofmann, Ulrich</creatorcontrib><description>In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 9781467321198</identifier><identifier>ISBN: 1467321192</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467321176</identifier><identifier>EISBN: 9781467321174</identifier><identifier>EISBN: 1467321184</identifier><identifier>EISBN: 9781467321181</identifier><identifier>DOI: 10.1109/IVS.2012.6232253</identifier><language>eng</language><publisher>IEEE</publisher><subject>Dynamics ; Laser modes ; Laser radar ; Measurement by laser beam ; Radar tracking ; Vehicle dynamics ; Vehicles</subject><ispartof>2012 IEEE Intelligent Vehicles Symposium, 2012, p.692-697</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232253$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232253$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Schueler, Kai</creatorcontrib><creatorcontrib>Weiherer, Tobias</creatorcontrib><creatorcontrib>Bouzouraa, Essayed</creatorcontrib><creatorcontrib>Hofmann, Ulrich</creatorcontrib><title>360 Degree multi sensor fusion for static and dynamic obstacles</title><title>2012 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown.</description><subject>Dynamics</subject><subject>Laser modes</subject><subject>Laser radar</subject><subject>Measurement by laser beam</subject><subject>Radar tracking</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>9781467321198</isbn><isbn>1467321192</isbn><isbn>1467321176</isbn><isbn>9781467321174</isbn><isbn>1467321184</isbn><isbn>9781467321181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kElrwzAUhNUN6qS5F3rRH7Cr954kS6dS0i0Q6KHLNciWXFS8FMs55N_X0PQ0HzMwDMPYNYgCQNjbzedbgQKw0EiIik7YAqQuCQFKfcoy1BLzEkGesZUtzX9mzTnLwBLkQpnyki1S-hZCKUTI2B1pwR_C1xgC7_btFHkKfRpG3uxTHHrezJgmN8Wau95zf-hdN_NQzWbdhnTFLhrXprA66pJ9PD2-r1_y7evzZn2_zSMQUm4DzouU8tgoXdXCUAU1aQSDVdBSC0lQIoETgoi8N9aSVkY671Hj7C3ZzV9vDCHsfsbYufGwOx5Bv5liShU</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Schueler, Kai</creator><creator>Weiherer, Tobias</creator><creator>Bouzouraa, Essayed</creator><creator>Hofmann, Ulrich</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>360 Degree multi sensor fusion for static and dynamic obstacles</title><author>Schueler, Kai ; Weiherer, Tobias ; Bouzouraa, Essayed ; Hofmann, Ulrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1323-9e297855d2f56bc083b1c362182be64604317231a00333dd89936584add262033</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Dynamics</topic><topic>Laser modes</topic><topic>Laser radar</topic><topic>Measurement by laser beam</topic><topic>Radar tracking</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Schueler, Kai</creatorcontrib><creatorcontrib>Weiherer, Tobias</creatorcontrib><creatorcontrib>Bouzouraa, Essayed</creatorcontrib><creatorcontrib>Hofmann, Ulrich</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Schueler, Kai</au><au>Weiherer, Tobias</au><au>Bouzouraa, Essayed</au><au>Hofmann, Ulrich</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>360 Degree multi sensor fusion for static and dynamic obstacles</atitle><btitle>2012 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2012-06</date><risdate>2012</risdate><spage>692</spage><epage>697</epage><pages>692-697</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>9781467321198</isbn><isbn>1467321192</isbn><eisbn>1467321176</eisbn><eisbn>9781467321174</eisbn><eisbn>1467321184</eisbn><eisbn>9781467321181</eisbn><abstract>In this paper an approach for 360 degree multi sensor fusion for static and dynamic obstacles is presented. The perception of static and dynamic obstacles is achieved by combining the advantages of model based object tracking and an occupancy map. For the model based object tracking a novel multi reference point tracking system, called best knowledge model, is introduced. The best knowledge model allows to track and describe objects with respect to a best suitable reference point. It is explained how the object tracking and the occupancy map closely interact and benefit from each other. Experimental results of the 360 degree multi sensor fusion system from an automotive test vehicle are shown.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2012.6232253</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1931-0587 |
ispartof | 2012 IEEE Intelligent Vehicles Symposium, 2012, p.692-697 |
issn | 1931-0587 2642-7214 |
language | eng |
recordid | cdi_ieee_primary_6232253 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Dynamics Laser modes Laser radar Measurement by laser beam Radar tracking Vehicle dynamics Vehicles |
title | 360 Degree multi sensor fusion for static and dynamic obstacles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A44%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=360%20Degree%20multi%20sensor%20fusion%20for%20static%20and%20dynamic%20obstacles&rft.btitle=2012%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Schueler,%20Kai&rft.date=2012-06&rft.spage=692&rft.epage=697&rft.pages=692-697&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=9781467321198&rft.isbn_list=1467321192&rft_id=info:doi/10.1109/IVS.2012.6232253&rft_dat=%3Cieee_6IE%3E6232253%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321176&rft.eisbn_list=9781467321174&rft.eisbn_list=1467321184&rft.eisbn_list=9781467321181&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232253&rfr_iscdi=true |