Semiotic prediction of driving behavior using unsupervised double articulation analyzer

In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taniguchi, Tadahiro, Nagasaka, Shogo, Hitomi, Kentarou, Chandrasiri, Naiwala P., Bando, Takashi
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue
container_start_page 849
container_title
container_volume
creator Taniguchi, Tadahiro
Nagasaka, Shogo
Hitomi, Kentarou
Chandrasiri, Naiwala P.
Bando, Takashi
description In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods.
doi_str_mv 10.1109/IVS.2012.6232243
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6232243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232243</ieee_id><sourcerecordid>6232243</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-7d13bb14337f70e02f06dd1321acbc7fbace06ed561ccc0037254a77fd45d1093</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi3dI7HxD6T4Xr-aJaooVKrEojyWlWPfgFGaVE5TqXw9AcpqNDM6sxjGrkFMAER-u3hdTVAATgxKRCVP2BCUsRIBrDllAzQKM4ugztg4t9P_Lp-eswHkEjKhp_aSDdv2UwitEWHA3la0ic0uer5NFKLfxabmTclDivtYv_OCPtw-Nol37Y_t6rbbUtrHlgIPTVdUxF3q8a5yv6irXXX4onTFLkpXtTQ-6oi9zO-fZ4_Z8ulhMbtbZhG02WU2gCwKUFLa0goSWAoT-gzB-cLbsnCehKGgDXjvhZAWtXLWlkHp0H8iR-zmbzcS0Xqb4salw_p4kPwGgYlXRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taniguchi, Tadahiro ; Nagasaka, Shogo ; Hitomi, Kentarou ; Chandrasiri, Naiwala P. ; Bando, Takashi</creator><creatorcontrib>Taniguchi, Tadahiro ; Nagasaka, Shogo ; Hitomi, Kentarou ; Chandrasiri, Naiwala P. ; Bando, Takashi</creatorcontrib><description>In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 9781467321198</identifier><identifier>ISBN: 1467321192</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467321176</identifier><identifier>EISBN: 9781467321174</identifier><identifier>EISBN: 1467321184</identifier><identifier>EISBN: 9781467321181</identifier><identifier>DOI: 10.1109/IVS.2012.6232243</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Context ; Data models ; Hidden Markov models ; Predictive models ; Semiotics ; Time series analysis ; Vehicles</subject><ispartof>2012 IEEE Intelligent Vehicles Symposium, 2012, p.849-854</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taniguchi, Tadahiro</creatorcontrib><creatorcontrib>Nagasaka, Shogo</creatorcontrib><creatorcontrib>Hitomi, Kentarou</creatorcontrib><creatorcontrib>Chandrasiri, Naiwala P.</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><title>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</title><title>2012 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods.</description><subject>Context</subject><subject>Data models</subject><subject>Hidden Markov models</subject><subject>Predictive models</subject><subject>Semiotics</subject><subject>Time series analysis</subject><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>9781467321198</isbn><isbn>1467321192</isbn><isbn>1467321176</isbn><isbn>9781467321174</isbn><isbn>1467321184</isbn><isbn>9781467321181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi3dI7HxD6T4Xr-aJaooVKrEojyWlWPfgFGaVE5TqXw9AcpqNDM6sxjGrkFMAER-u3hdTVAATgxKRCVP2BCUsRIBrDllAzQKM4ugztg4t9P_Lp-eswHkEjKhp_aSDdv2UwitEWHA3la0ic0uer5NFKLfxabmTclDivtYv_OCPtw-Nol37Y_t6rbbUtrHlgIPTVdUxF3q8a5yv6irXXX4onTFLkpXtTQ-6oi9zO-fZ4_Z8ulhMbtbZhG02WU2gCwKUFLa0goSWAoT-gzB-cLbsnCehKGgDXjvhZAWtXLWlkHp0H8iR-zmbzcS0Xqb4salw_p4kPwGgYlXRw</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Taniguchi, Tadahiro</creator><creator>Nagasaka, Shogo</creator><creator>Hitomi, Kentarou</creator><creator>Chandrasiri, Naiwala P.</creator><creator>Bando, Takashi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</title><author>Taniguchi, Tadahiro ; Nagasaka, Shogo ; Hitomi, Kentarou ; Chandrasiri, Naiwala P. ; Bando, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-7d13bb14337f70e02f06dd1321acbc7fbace06ed561ccc0037254a77fd45d1093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2012</creationdate><topic>Context</topic><topic>Data models</topic><topic>Hidden Markov models</topic><topic>Predictive models</topic><topic>Semiotics</topic><topic>Time series analysis</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Taniguchi, Tadahiro</creatorcontrib><creatorcontrib>Nagasaka, Shogo</creatorcontrib><creatorcontrib>Hitomi, Kentarou</creatorcontrib><creatorcontrib>Chandrasiri, Naiwala P.</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taniguchi, Tadahiro</au><au>Nagasaka, Shogo</au><au>Hitomi, Kentarou</au><au>Chandrasiri, Naiwala P.</au><au>Bando, Takashi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</atitle><btitle>2012 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2012-06</date><risdate>2012</risdate><spage>849</spage><epage>854</epage><pages>849-854</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>9781467321198</isbn><isbn>1467321192</isbn><eisbn>1467321176</eisbn><eisbn>9781467321174</eisbn><eisbn>1467321184</eisbn><eisbn>9781467321181</eisbn><abstract>In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2012.6232243</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1931-0587
ispartof 2012 IEEE Intelligent Vehicles Symposium, 2012, p.849-854
issn 1931-0587
2642-7214
language eng ; jpn
recordid cdi_ieee_primary_6232243
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Context
Data models
Hidden Markov models
Predictive models
Semiotics
Time series analysis
Vehicles
title Semiotic prediction of driving behavior using unsupervised double articulation analyzer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semiotic%20prediction%20of%20driving%20behavior%20using%20unsupervised%20double%20articulation%20analyzer&rft.btitle=2012%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Taniguchi,%20Tadahiro&rft.date=2012-06&rft.spage=849&rft.epage=854&rft.pages=849-854&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=9781467321198&rft.isbn_list=1467321192&rft_id=info:doi/10.1109/IVS.2012.6232243&rft_dat=%3Cieee_6IE%3E6232243%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321176&rft.eisbn_list=9781467321174&rft.eisbn_list=1467321184&rft.eisbn_list=9781467321181&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232243&rfr_iscdi=true