Semiotic prediction of driving behavior using unsupervised double articulation analyzer
In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Mar...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854 |
---|---|
container_issue | |
container_start_page | 849 |
container_title | |
container_volume | |
creator | Taniguchi, Tadahiro Nagasaka, Shogo Hitomi, Kentarou Chandrasiri, Naiwala P. Bando, Takashi |
description | In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods. |
doi_str_mv | 10.1109/IVS.2012.6232243 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6232243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6232243</ieee_id><sourcerecordid>6232243</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-7d13bb14337f70e02f06dd1321acbc7fbace06ed561ccc0037254a77fd45d1093</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi3dI7HxD6T4Xr-aJaooVKrEojyWlWPfgFGaVE5TqXw9AcpqNDM6sxjGrkFMAER-u3hdTVAATgxKRCVP2BCUsRIBrDllAzQKM4ugztg4t9P_Lp-eswHkEjKhp_aSDdv2UwitEWHA3la0ic0uer5NFKLfxabmTclDivtYv_OCPtw-Nol37Y_t6rbbUtrHlgIPTVdUxF3q8a5yv6irXXX4onTFLkpXtTQ-6oi9zO-fZ4_Z8ulhMbtbZhG02WU2gCwKUFLa0goSWAoT-gzB-cLbsnCehKGgDXjvhZAWtXLWlkHp0H8iR-zmbzcS0Xqb4salw_p4kPwGgYlXRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taniguchi, Tadahiro ; Nagasaka, Shogo ; Hitomi, Kentarou ; Chandrasiri, Naiwala P. ; Bando, Takashi</creator><creatorcontrib>Taniguchi, Tadahiro ; Nagasaka, Shogo ; Hitomi, Kentarou ; Chandrasiri, Naiwala P. ; Bando, Takashi</creatorcontrib><description>In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods.</description><identifier>ISSN: 1931-0587</identifier><identifier>ISBN: 9781467321198</identifier><identifier>ISBN: 1467321192</identifier><identifier>EISSN: 2642-7214</identifier><identifier>EISBN: 1467321176</identifier><identifier>EISBN: 9781467321174</identifier><identifier>EISBN: 1467321184</identifier><identifier>EISBN: 9781467321181</identifier><identifier>DOI: 10.1109/IVS.2012.6232243</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Context ; Data models ; Hidden Markov models ; Predictive models ; Semiotics ; Time series analysis ; Vehicles</subject><ispartof>2012 IEEE Intelligent Vehicles Symposium, 2012, p.849-854</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6232243$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6232243$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taniguchi, Tadahiro</creatorcontrib><creatorcontrib>Nagasaka, Shogo</creatorcontrib><creatorcontrib>Hitomi, Kentarou</creatorcontrib><creatorcontrib>Chandrasiri, Naiwala P.</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><title>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</title><title>2012 IEEE Intelligent Vehicles Symposium</title><addtitle>IVS</addtitle><description>In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods.</description><subject>Context</subject><subject>Data models</subject><subject>Hidden Markov models</subject><subject>Predictive models</subject><subject>Semiotics</subject><subject>Time series analysis</subject><subject>Vehicles</subject><issn>1931-0587</issn><issn>2642-7214</issn><isbn>9781467321198</isbn><isbn>1467321192</isbn><isbn>1467321176</isbn><isbn>9781467321174</isbn><isbn>1467321184</isbn><isbn>9781467321181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi3dI7HxD6T4Xr-aJaooVKrEojyWlWPfgFGaVE5TqXw9AcpqNDM6sxjGrkFMAER-u3hdTVAATgxKRCVP2BCUsRIBrDllAzQKM4ugztg4t9P_Lp-eswHkEjKhp_aSDdv2UwitEWHA3la0ic0uer5NFKLfxabmTclDivtYv_OCPtw-Nol37Y_t6rbbUtrHlgIPTVdUxF3q8a5yv6irXXX4onTFLkpXtTQ-6oi9zO-fZ4_Z8ulhMbtbZhG02WU2gCwKUFLa0goSWAoT-gzB-cLbsnCehKGgDXjvhZAWtXLWlkHp0H8iR-zmbzcS0Xqb4salw_p4kPwGgYlXRw</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Taniguchi, Tadahiro</creator><creator>Nagasaka, Shogo</creator><creator>Hitomi, Kentarou</creator><creator>Chandrasiri, Naiwala P.</creator><creator>Bando, Takashi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</title><author>Taniguchi, Tadahiro ; Nagasaka, Shogo ; Hitomi, Kentarou ; Chandrasiri, Naiwala P. ; Bando, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-7d13bb14337f70e02f06dd1321acbc7fbace06ed561ccc0037254a77fd45d1093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2012</creationdate><topic>Context</topic><topic>Data models</topic><topic>Hidden Markov models</topic><topic>Predictive models</topic><topic>Semiotics</topic><topic>Time series analysis</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Taniguchi, Tadahiro</creatorcontrib><creatorcontrib>Nagasaka, Shogo</creatorcontrib><creatorcontrib>Hitomi, Kentarou</creatorcontrib><creatorcontrib>Chandrasiri, Naiwala P.</creatorcontrib><creatorcontrib>Bando, Takashi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taniguchi, Tadahiro</au><au>Nagasaka, Shogo</au><au>Hitomi, Kentarou</au><au>Chandrasiri, Naiwala P.</au><au>Bando, Takashi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Semiotic prediction of driving behavior using unsupervised double articulation analyzer</atitle><btitle>2012 IEEE Intelligent Vehicles Symposium</btitle><stitle>IVS</stitle><date>2012-06</date><risdate>2012</risdate><spage>849</spage><epage>854</epage><pages>849-854</pages><issn>1931-0587</issn><eissn>2642-7214</eissn><isbn>9781467321198</isbn><isbn>1467321192</isbn><eisbn>1467321176</eisbn><eisbn>9781467321174</eisbn><eisbn>1467321184</eisbn><eisbn>9781467321181</eisbn><abstract>In this paper, we propose a novel semiotic prediction method for driving behavior based on double articulation structure. It has been reported that predicting driving behavior from its multivariate time series behavior data by using machine learning methods, e.g., hybrid dynamical system, hidden Markov model and Gaussian mixture model, is difficult because a driver's behavior is affected by various contextual information. To overcome this problem, we assume that contextual information has a double articulation structure and develop a novel semiotic prediction method by extending nonparametric Bayesian unsupervised morphological analyzer. Effectiveness of our prediction method was evaluated using synthetic data and real driving data. In these experiments, the proposed method achieved long-term prediction 2-6 times longer than some conventional methods.</abstract><pub>IEEE</pub><doi>10.1109/IVS.2012.6232243</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1931-0587 |
ispartof | 2012 IEEE Intelligent Vehicles Symposium, 2012, p.849-854 |
issn | 1931-0587 2642-7214 |
language | eng ; jpn |
recordid | cdi_ieee_primary_6232243 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Context Data models Hidden Markov models Predictive models Semiotics Time series analysis Vehicles |
title | Semiotic prediction of driving behavior using unsupervised double articulation analyzer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A21%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Semiotic%20prediction%20of%20driving%20behavior%20using%20unsupervised%20double%20articulation%20analyzer&rft.btitle=2012%20IEEE%20Intelligent%20Vehicles%20Symposium&rft.au=Taniguchi,%20Tadahiro&rft.date=2012-06&rft.spage=849&rft.epage=854&rft.pages=849-854&rft.issn=1931-0587&rft.eissn=2642-7214&rft.isbn=9781467321198&rft.isbn_list=1467321192&rft_id=info:doi/10.1109/IVS.2012.6232243&rft_dat=%3Cieee_6IE%3E6232243%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467321176&rft.eisbn_list=9781467321174&rft.eisbn_list=1467321184&rft.eisbn_list=9781467321181&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6232243&rfr_iscdi=true |