The farthest point strategy for progressive image sampling

A new method of farthest point strategy (FPS) for progressive image acquisition-an acquisition process that enables an approximation of the whole image at each sampling stage-is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient means for spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 1997-09, Vol.6 (9), p.1305-1315
Hauptverfasser: Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1315
container_issue 9
container_start_page 1305
container_title IEEE transactions on image processing
container_volume 6
creator Eldar, Y.
Lindenbaum, M.
Porat, M.
Zeevi, Y.Y.
description A new method of farthest point strategy (FPS) for progressive image acquisition-an acquisition process that enables an approximation of the whole image at each sampling stage-is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient means for sparse image sampling and display. In contrast to previously presented stochastic approaches, the FPS guarantees the uniformity in a deterministic min-max sense. Within this uniformity criterion, the sampling points are irregularly spaced, exhibiting anti-aliasing properties comparable to those characteristic of the best available method (Poisson disk). A straightforward modification of the FPS yields an image-dependent adaptive sampling scheme. An efficient O(N log N) algorithm for both versions is introduced, and several applications of the FPS are discussed.
doi_str_mv 10.1109/83.623193
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_623193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>623193</ieee_id><sourcerecordid>28612593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-86f54ca654c9911ca1ea98a8d063bc9f2038751938ff9c3e7c2ac0242f8153ff3</originalsourceid><addsrcrecordid>eNqF0L1LAzEYBvAgitXq4OogN4jicDVvksuHmxS_oOBS5yNNk-vJfdTkKvS_N-WOummGJJAfbx4ehC4ATwCwupd0wgkFRQ_QCSgGKcaMHMY7zkQqgKkROg3hE2NgGfBjNAJJJMWgTtDDfGUTp323sqFL1m3ZdEnovO5ssU1c65O1bwtvQyi_bVLWurBJ0PW6KpviDB05XQV7Ppxj9PH8NJ--prP3l7fp4yw1LJNdKrnLmNE8bkoBGA1WK6nlEnO6MMoRTKXIYnjpnDLUCkO0wYQRJyGjztExuu3nxihfmxgzr8tgbFXpxrabkAvKiKAgeJQ3f0oiOZBM0f8hz6RSYgfvemh8G4K3Ll_72ILf5oDzXfe5pHnffbRXw9DNorbLXzmUHcH1AHQwunJeN6YMe0eEknFFdtmz0lq7fx0--QE32ZH4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26589973</pqid></control><display><type>article</type><title>The farthest point strategy for progressive image sampling</title><source>IEEE Electronic Library (IEL)</source><creator>Eldar, Y. ; Lindenbaum, M. ; Porat, M. ; Zeevi, Y.Y.</creator><creatorcontrib>Eldar, Y. ; Lindenbaum, M. ; Porat, M. ; Zeevi, Y.Y.</creatorcontrib><description>A new method of farthest point strategy (FPS) for progressive image acquisition-an acquisition process that enables an approximation of the whole image at each sampling stage-is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient means for sparse image sampling and display. In contrast to previously presented stochastic approaches, the FPS guarantees the uniformity in a deterministic min-max sense. Within this uniformity criterion, the sampling points are irregularly spaced, exhibiting anti-aliasing properties comparable to those characteristic of the best available method (Poisson disk). A straightforward modification of the FPS yields an image-dependent adaptive sampling scheme. An efficient O(N log N) algorithm for both versions is introduced, and several applications of the FPS are discussed.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/83.623193</identifier><identifier>PMID: 18283019</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Bandwidth ; Computer science ; Data acquisition ; Displays ; Exact sciences and technology ; Image processing ; Image resolution ; Image sampling ; Image sensors ; Information, signal and communications theory ; Sampling methods ; Signal processing ; Stochastic processes ; Telecommunications and information theory</subject><ispartof>IEEE transactions on image processing, 1997-09, Vol.6 (9), p.1305-1315</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-86f54ca654c9911ca1ea98a8d063bc9f2038751938ff9c3e7c2ac0242f8153ff3</citedby><cites>FETCH-LOGICAL-c458t-86f54ca654c9911ca1ea98a8d063bc9f2038751938ff9c3e7c2ac0242f8153ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/623193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/623193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2798888$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18283019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eldar, Y.</creatorcontrib><creatorcontrib>Lindenbaum, M.</creatorcontrib><creatorcontrib>Porat, M.</creatorcontrib><creatorcontrib>Zeevi, Y.Y.</creatorcontrib><title>The farthest point strategy for progressive image sampling</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>A new method of farthest point strategy (FPS) for progressive image acquisition-an acquisition process that enables an approximation of the whole image at each sampling stage-is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient means for sparse image sampling and display. In contrast to previously presented stochastic approaches, the FPS guarantees the uniformity in a deterministic min-max sense. Within this uniformity criterion, the sampling points are irregularly spaced, exhibiting anti-aliasing properties comparable to those characteristic of the best available method (Poisson disk). A straightforward modification of the FPS yields an image-dependent adaptive sampling scheme. An efficient O(N log N) algorithm for both versions is introduced, and several applications of the FPS are discussed.</description><subject>Applied sciences</subject><subject>Bandwidth</subject><subject>Computer science</subject><subject>Data acquisition</subject><subject>Displays</subject><subject>Exact sciences and technology</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image sampling</subject><subject>Image sensors</subject><subject>Information, signal and communications theory</subject><subject>Sampling methods</subject><subject>Signal processing</subject><subject>Stochastic processes</subject><subject>Telecommunications and information theory</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0L1LAzEYBvAgitXq4OogN4jicDVvksuHmxS_oOBS5yNNk-vJfdTkKvS_N-WOummGJJAfbx4ehC4ATwCwupd0wgkFRQ_QCSgGKcaMHMY7zkQqgKkROg3hE2NgGfBjNAJJJMWgTtDDfGUTp323sqFL1m3ZdEnovO5ssU1c65O1bwtvQyi_bVLWurBJ0PW6KpviDB05XQV7Ppxj9PH8NJ--prP3l7fp4yw1LJNdKrnLmNE8bkoBGA1WK6nlEnO6MMoRTKXIYnjpnDLUCkO0wYQRJyGjztExuu3nxihfmxgzr8tgbFXpxrabkAvKiKAgeJQ3f0oiOZBM0f8hz6RSYgfvemh8G4K3Ll_72ILf5oDzXfe5pHnffbRXw9DNorbLXzmUHcH1AHQwunJeN6YMe0eEknFFdtmz0lq7fx0--QE32ZH4</recordid><startdate>19970901</startdate><enddate>19970901</enddate><creator>Eldar, Y.</creator><creator>Lindenbaum, M.</creator><creator>Porat, M.</creator><creator>Zeevi, Y.Y.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19970901</creationdate><title>The farthest point strategy for progressive image sampling</title><author>Eldar, Y. ; Lindenbaum, M. ; Porat, M. ; Zeevi, Y.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-86f54ca654c9911ca1ea98a8d063bc9f2038751938ff9c3e7c2ac0242f8153ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Applied sciences</topic><topic>Bandwidth</topic><topic>Computer science</topic><topic>Data acquisition</topic><topic>Displays</topic><topic>Exact sciences and technology</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image sampling</topic><topic>Image sensors</topic><topic>Information, signal and communications theory</topic><topic>Sampling methods</topic><topic>Signal processing</topic><topic>Stochastic processes</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eldar, Y.</creatorcontrib><creatorcontrib>Lindenbaum, M.</creatorcontrib><creatorcontrib>Porat, M.</creatorcontrib><creatorcontrib>Zeevi, Y.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Eldar, Y.</au><au>Lindenbaum, M.</au><au>Porat, M.</au><au>Zeevi, Y.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The farthest point strategy for progressive image sampling</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>1997-09-01</date><risdate>1997</risdate><volume>6</volume><issue>9</issue><spage>1305</spage><epage>1315</epage><pages>1305-1315</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>A new method of farthest point strategy (FPS) for progressive image acquisition-an acquisition process that enables an approximation of the whole image at each sampling stage-is presented. Its main advantage is in retaining its uniformity with the increased density, providing efficient means for sparse image sampling and display. In contrast to previously presented stochastic approaches, the FPS guarantees the uniformity in a deterministic min-max sense. Within this uniformity criterion, the sampling points are irregularly spaced, exhibiting anti-aliasing properties comparable to those characteristic of the best available method (Poisson disk). A straightforward modification of the FPS yields an image-dependent adaptive sampling scheme. An efficient O(N log N) algorithm for both versions is introduced, and several applications of the FPS are discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18283019</pmid><doi>10.1109/83.623193</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 1997-09, Vol.6 (9), p.1305-1315
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_623193
source IEEE Electronic Library (IEL)
subjects Applied sciences
Bandwidth
Computer science
Data acquisition
Displays
Exact sciences and technology
Image processing
Image resolution
Image sampling
Image sensors
Information, signal and communications theory
Sampling methods
Signal processing
Stochastic processes
Telecommunications and information theory
title The farthest point strategy for progressive image sampling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A23%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20farthest%20point%20strategy%20for%20progressive%20image%20sampling&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Eldar,%20Y.&rft.date=1997-09-01&rft.volume=6&rft.issue=9&rft.spage=1305&rft.epage=1315&rft.pages=1305-1315&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/83.623193&rft_dat=%3Cproquest_RIE%3E28612593%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=26589973&rft_id=info:pmid/18283019&rft_ieee_id=623193&rfr_iscdi=true