Stochastic source seeking in complex environments

The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Atanasov, N., Le Ny, J., Michael, N., Pappas, G. J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3018
container_issue
container_start_page 3013
container_title
container_volume
creator Atanasov, N.
Le Ny, J.
Michael, N.
Pappas, G. J.
description The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments.
doi_str_mv 10.1109/ICRA.2012.6225289
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6225289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6225289</ieee_id><sourcerecordid>6225289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-da2c176b023a483819c0e07fc8138763e6a67b1bb66e51957197416dc6580a613</originalsourceid><addsrcrecordid>eNpVj8tKw0AUQMcXGGs_QNzkB1LvncedmWUJPgoFwQe4K5PprY42SclE0b93YTeuzuLAgSPEBcIMEfzVon6YzySgnJGURjp_IKbeOtRkFWrQdCgKaaytwNmXo39O-WNRIBiotJX-VJzl_A4AShEVAh_HPr6FPKZY5v5ziFxm5o_UvZapK2Pf7rb8XXL3lYa-a7kb87k42YRt5umeE_F8c_1U31XL-9tFPV9WUSk5VusgI1pqQKqgnXLoIzDYTXSonCXFFMg22DREbNAbi95qpHUk4yAQqom4_OsmZl7thtSG4We1v1e_CX9IEg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic source seeking in complex environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Atanasov, N. ; Le Ny, J. ; Michael, N. ; Pappas, G. J.</creator><creatorcontrib>Atanasov, N. ; Le Ny, J. ; Michael, N. ; Pappas, G. J.</creatorcontrib><description>The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781467314039</identifier><identifier>ISBN: 146731403X</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467314046</identifier><identifier>EISBN: 1467315788</identifier><identifier>EISBN: 1467314056</identifier><identifier>EISBN: 9781467314053</identifier><identifier>EISBN: 9781467315784</identifier><identifier>EISBN: 1467314048</identifier><identifier>DOI: 10.1109/ICRA.2012.6225289</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Noise ; Robot kinematics ; Stochastic processes ; Trajectory ; Wireless communication</subject><ispartof>2012 IEEE International Conference on Robotics and Automation, 2012, p.3013-3018</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-da2c176b023a483819c0e07fc8138763e6a67b1bb66e51957197416dc6580a613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6225289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6225289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Atanasov, N.</creatorcontrib><creatorcontrib>Le Ny, J.</creatorcontrib><creatorcontrib>Michael, N.</creatorcontrib><creatorcontrib>Pappas, G. J.</creatorcontrib><title>Stochastic source seeking in complex environments</title><title>2012 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments.</description><subject>Approximation methods</subject><subject>Noise</subject><subject>Robot kinematics</subject><subject>Stochastic processes</subject><subject>Trajectory</subject><subject>Wireless communication</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781467314039</isbn><isbn>146731403X</isbn><isbn>9781467314046</isbn><isbn>1467315788</isbn><isbn>1467314056</isbn><isbn>9781467314053</isbn><isbn>9781467315784</isbn><isbn>1467314048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tKw0AUQMcXGGs_QNzkB1LvncedmWUJPgoFwQe4K5PprY42SclE0b93YTeuzuLAgSPEBcIMEfzVon6YzySgnJGURjp_IKbeOtRkFWrQdCgKaaytwNmXo39O-WNRIBiotJX-VJzl_A4AShEVAh_HPr6FPKZY5v5ziFxm5o_UvZapK2Pf7rb8XXL3lYa-a7kb87k42YRt5umeE_F8c_1U31XL-9tFPV9WUSk5VusgI1pqQKqgnXLoIzDYTXSonCXFFMg22DREbNAbi95qpHUk4yAQqom4_OsmZl7thtSG4We1v1e_CX9IEg</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Atanasov, N.</creator><creator>Le Ny, J.</creator><creator>Michael, N.</creator><creator>Pappas, G. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Stochastic source seeking in complex environments</title><author>Atanasov, N. ; Le Ny, J. ; Michael, N. ; Pappas, G. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-da2c176b023a483819c0e07fc8138763e6a67b1bb66e51957197416dc6580a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Noise</topic><topic>Robot kinematics</topic><topic>Stochastic processes</topic><topic>Trajectory</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Atanasov, N.</creatorcontrib><creatorcontrib>Le Ny, J.</creatorcontrib><creatorcontrib>Michael, N.</creatorcontrib><creatorcontrib>Pappas, G. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Atanasov, N.</au><au>Le Ny, J.</au><au>Michael, N.</au><au>Pappas, G. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic source seeking in complex environments</atitle><btitle>2012 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2012-05</date><risdate>2012</risdate><spage>3013</spage><epage>3018</epage><pages>3013-3018</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781467314039</isbn><isbn>146731403X</isbn><eisbn>9781467314046</eisbn><eisbn>1467315788</eisbn><eisbn>1467314056</eisbn><eisbn>9781467314053</eisbn><eisbn>9781467315784</eisbn><eisbn>1467314048</eisbn><abstract>The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2012.6225289</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2012 IEEE International Conference on Robotics and Automation, 2012, p.3013-3018
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_6225289
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Noise
Robot kinematics
Stochastic processes
Trajectory
Wireless communication
title Stochastic source seeking in complex environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20source%20seeking%20in%20complex%20environments&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Atanasov,%20N.&rft.date=2012-05&rft.spage=3013&rft.epage=3018&rft.pages=3013-3018&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781467314039&rft.isbn_list=146731403X&rft_id=info:doi/10.1109/ICRA.2012.6225289&rft_dat=%3Cieee_6IE%3E6225289%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314046&rft.eisbn_list=1467315788&rft.eisbn_list=1467314056&rft.eisbn_list=9781467314053&rft.eisbn_list=9781467315784&rft.eisbn_list=1467314048&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6225289&rfr_iscdi=true