Stochastic source seeking in complex environments
The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3018 |
---|---|
container_issue | |
container_start_page | 3013 |
container_title | |
container_volume | |
creator | Atanasov, N. Le Ny, J. Michael, N. Pappas, G. J. |
description | The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments. |
doi_str_mv | 10.1109/ICRA.2012.6225289 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6225289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6225289</ieee_id><sourcerecordid>6225289</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-da2c176b023a483819c0e07fc8138763e6a67b1bb66e51957197416dc6580a613</originalsourceid><addsrcrecordid>eNpVj8tKw0AUQMcXGGs_QNzkB1LvncedmWUJPgoFwQe4K5PprY42SclE0b93YTeuzuLAgSPEBcIMEfzVon6YzySgnJGURjp_IKbeOtRkFWrQdCgKaaytwNmXo39O-WNRIBiotJX-VJzl_A4AShEVAh_HPr6FPKZY5v5ziFxm5o_UvZapK2Pf7rb8XXL3lYa-a7kb87k42YRt5umeE_F8c_1U31XL-9tFPV9WUSk5VusgI1pqQKqgnXLoIzDYTXSonCXFFMg22DREbNAbi95qpHUk4yAQqom4_OsmZl7thtSG4We1v1e_CX9IEg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic source seeking in complex environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Atanasov, N. ; Le Ny, J. ; Michael, N. ; Pappas, G. J.</creator><creatorcontrib>Atanasov, N. ; Le Ny, J. ; Michael, N. ; Pappas, G. J.</creatorcontrib><description>The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781467314039</identifier><identifier>ISBN: 146731403X</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467314046</identifier><identifier>EISBN: 1467315788</identifier><identifier>EISBN: 1467314056</identifier><identifier>EISBN: 9781467314053</identifier><identifier>EISBN: 9781467315784</identifier><identifier>EISBN: 1467314048</identifier><identifier>DOI: 10.1109/ICRA.2012.6225289</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Noise ; Robot kinematics ; Stochastic processes ; Trajectory ; Wireless communication</subject><ispartof>2012 IEEE International Conference on Robotics and Automation, 2012, p.3013-3018</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-da2c176b023a483819c0e07fc8138763e6a67b1bb66e51957197416dc6580a613</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6225289$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6225289$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Atanasov, N.</creatorcontrib><creatorcontrib>Le Ny, J.</creatorcontrib><creatorcontrib>Michael, N.</creatorcontrib><creatorcontrib>Pappas, G. J.</creatorcontrib><title>Stochastic source seeking in complex environments</title><title>2012 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments.</description><subject>Approximation methods</subject><subject>Noise</subject><subject>Robot kinematics</subject><subject>Stochastic processes</subject><subject>Trajectory</subject><subject>Wireless communication</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781467314039</isbn><isbn>146731403X</isbn><isbn>9781467314046</isbn><isbn>1467315788</isbn><isbn>1467314056</isbn><isbn>9781467314053</isbn><isbn>9781467315784</isbn><isbn>1467314048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tKw0AUQMcXGGs_QNzkB1LvncedmWUJPgoFwQe4K5PprY42SclE0b93YTeuzuLAgSPEBcIMEfzVon6YzySgnJGURjp_IKbeOtRkFWrQdCgKaaytwNmXo39O-WNRIBiotJX-VJzl_A4AShEVAh_HPr6FPKZY5v5ziFxm5o_UvZapK2Pf7rb8XXL3lYa-a7kb87k42YRt5umeE_F8c_1U31XL-9tFPV9WUSk5VusgI1pqQKqgnXLoIzDYTXSonCXFFMg22DREbNAbi95qpHUk4yAQqom4_OsmZl7thtSG4We1v1e_CX9IEg</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Atanasov, N.</creator><creator>Le Ny, J.</creator><creator>Michael, N.</creator><creator>Pappas, G. J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Stochastic source seeking in complex environments</title><author>Atanasov, N. ; Le Ny, J. ; Michael, N. ; Pappas, G. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-da2c176b023a483819c0e07fc8138763e6a67b1bb66e51957197416dc6580a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Noise</topic><topic>Robot kinematics</topic><topic>Stochastic processes</topic><topic>Trajectory</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Atanasov, N.</creatorcontrib><creatorcontrib>Le Ny, J.</creatorcontrib><creatorcontrib>Michael, N.</creatorcontrib><creatorcontrib>Pappas, G. J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Atanasov, N.</au><au>Le Ny, J.</au><au>Michael, N.</au><au>Pappas, G. J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic source seeking in complex environments</atitle><btitle>2012 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2012-05</date><risdate>2012</risdate><spage>3013</spage><epage>3018</epage><pages>3013-3018</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781467314039</isbn><isbn>146731403X</isbn><eisbn>9781467314046</eisbn><eisbn>1467315788</eisbn><eisbn>1467314056</eisbn><eisbn>9781467314053</eisbn><eisbn>9781467315784</eisbn><eisbn>1467314048</eisbn><abstract>The objective of source seeking problems is to determine the minimum of an unknown signal field, which represents a physical quantity of interest, such as heat, chemical concentration, or sound. This paper proposes a strategy for source seeking in a noisy signal field using a mobile robot and based on a stochastic gradient descent algorithm. Our scheme does not require a prior map of the environment or a model of the signal field and is simple enough to be implemented on platforms with limited computational power. We discuss the asymptotic convergence guarantees of algorithm and give specific guidelines for its application to mobile robots in unknown indoor environments with obstacles. Both simulations and real-world experiments were carried out to evaluate the performance of our approach. The results suggest that the algorithm has good finite time performance in complex environments.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2012.6225289</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2012 IEEE International Conference on Robotics and Automation, 2012, p.3013-3018 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_6225289 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Noise Robot kinematics Stochastic processes Trajectory Wireless communication |
title | Stochastic source seeking in complex environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20source%20seeking%20in%20complex%20environments&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Atanasov,%20N.&rft.date=2012-05&rft.spage=3013&rft.epage=3018&rft.pages=3013-3018&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781467314039&rft.isbn_list=146731403X&rft_id=info:doi/10.1109/ICRA.2012.6225289&rft_dat=%3Cieee_6IE%3E6225289%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314046&rft.eisbn_list=1467315788&rft.eisbn_list=1467314056&rft.eisbn_list=9781467314053&rft.eisbn_list=9781467315784&rft.eisbn_list=1467314048&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6225289&rfr_iscdi=true |