A depth space approach to human-robot collision avoidance
In this paper a real-time collision avoidance approach is presented for safe human-robot coexistence. The main contribution is a fast method to evaluate distances between the robot and possibly moving obstacles (including humans), based on the concept of depth space. The distances are used to genera...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 345 |
---|---|
container_issue | |
container_start_page | 338 |
container_title | |
container_volume | |
creator | Flacco, F. Kroger, T. De Luca, A. Khatib, O. |
description | In this paper a real-time collision avoidance approach is presented for safe human-robot coexistence. The main contribution is a fast method to evaluate distances between the robot and possibly moving obstacles (including humans), based on the concept of depth space. The distances are used to generate repulsive vectors that are used to control the robot while executing a generic motion task. The repulsive vectors can also take advantage of an estimation of the obstacle velocity. In order to preserve the execution of a Cartesian task with a redundant manipulator, a simple collision avoidance algorithm has been implemented where different reaction behaviors are set up for the end-effector and for other control points along the robot structure. The complete collision avoidance framework, from perception of the environment to joint-level robot control, is presented for a 7-dof KUKA Light-Weight-Robot IV using the Microsoft Kinect sensor. Experimental results are reported for dynamic environments with obstacles and a human. |
doi_str_mv | 10.1109/ICRA.2012.6225245 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6225245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6225245</ieee_id><sourcerecordid>6225245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-cd4f5bd4c4ccd69aabbe3896741f883b0577266e04ea691b0c35aac95e13dc393</originalsourceid><addsrcrecordid>eNpVkMtKxDAUhuMNrOM8gLjJC7Se5OTSLIfiZWBAEAV3w0ma0kqnKW0VfHsFZ-PqX3zw8fEzdiOgEALc3bZ62RQShCyMlFoqfcLWzpZCGYtCgTKnLJPa2hxK-372j6E7Z5kADbmy0l2yq3n-AABEYzLmNryO49LyeaQQOY3jlCi0fEm8_TzQkE_Jp4WH1Pfd3KWB01fqahpCvGYXDfVzXB93xd4e7l-rp3z3_LitNrs8IMolD7VqtK9VUCHUxhF5H7F0xirRlCV6-I2WxkRQkYwTHgJqouB0FFgHdLhit3_eLsa4H6fuQNP3_vgC_gCv6Evt</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A depth space approach to human-robot collision avoidance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Flacco, F. ; Kroger, T. ; De Luca, A. ; Khatib, O.</creator><creatorcontrib>Flacco, F. ; Kroger, T. ; De Luca, A. ; Khatib, O.</creatorcontrib><description>In this paper a real-time collision avoidance approach is presented for safe human-robot coexistence. The main contribution is a fast method to evaluate distances between the robot and possibly moving obstacles (including humans), based on the concept of depth space. The distances are used to generate repulsive vectors that are used to control the robot while executing a generic motion task. The repulsive vectors can also take advantage of an estimation of the obstacle velocity. In order to preserve the execution of a Cartesian task with a redundant manipulator, a simple collision avoidance algorithm has been implemented where different reaction behaviors are set up for the end-effector and for other control points along the robot structure. The complete collision avoidance framework, from perception of the environment to joint-level robot control, is presented for a 7-dof KUKA Light-Weight-Robot IV using the Microsoft Kinect sensor. Experimental results are reported for dynamic environments with obstacles and a human.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781467314039</identifier><identifier>ISBN: 146731403X</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467314046</identifier><identifier>EISBN: 1467315788</identifier><identifier>EISBN: 1467314056</identifier><identifier>EISBN: 9781467314053</identifier><identifier>EISBN: 9781467315784</identifier><identifier>EISBN: 1467314048</identifier><identifier>DOI: 10.1109/ICRA.2012.6225245</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace electronics ; Collision avoidance ; Manipulators ; Robot sensing systems ; Trajectory ; Vectors</subject><ispartof>2012 IEEE International Conference on Robotics and Automation, 2012, p.338-345</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-cd4f5bd4c4ccd69aabbe3896741f883b0577266e04ea691b0c35aac95e13dc393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6225245$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6225245$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Flacco, F.</creatorcontrib><creatorcontrib>Kroger, T.</creatorcontrib><creatorcontrib>De Luca, A.</creatorcontrib><creatorcontrib>Khatib, O.</creatorcontrib><title>A depth space approach to human-robot collision avoidance</title><title>2012 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>In this paper a real-time collision avoidance approach is presented for safe human-robot coexistence. The main contribution is a fast method to evaluate distances between the robot and possibly moving obstacles (including humans), based on the concept of depth space. The distances are used to generate repulsive vectors that are used to control the robot while executing a generic motion task. The repulsive vectors can also take advantage of an estimation of the obstacle velocity. In order to preserve the execution of a Cartesian task with a redundant manipulator, a simple collision avoidance algorithm has been implemented where different reaction behaviors are set up for the end-effector and for other control points along the robot structure. The complete collision avoidance framework, from perception of the environment to joint-level robot control, is presented for a 7-dof KUKA Light-Weight-Robot IV using the Microsoft Kinect sensor. Experimental results are reported for dynamic environments with obstacles and a human.</description><subject>Aerospace electronics</subject><subject>Collision avoidance</subject><subject>Manipulators</subject><subject>Robot sensing systems</subject><subject>Trajectory</subject><subject>Vectors</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781467314039</isbn><isbn>146731403X</isbn><isbn>9781467314046</isbn><isbn>1467315788</isbn><isbn>1467314056</isbn><isbn>9781467314053</isbn><isbn>9781467315784</isbn><isbn>1467314048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKxDAUhuMNrOM8gLjJC7Se5OTSLIfiZWBAEAV3w0ma0kqnKW0VfHsFZ-PqX3zw8fEzdiOgEALc3bZ62RQShCyMlFoqfcLWzpZCGYtCgTKnLJPa2hxK-372j6E7Z5kADbmy0l2yq3n-AABEYzLmNryO49LyeaQQOY3jlCi0fEm8_TzQkE_Jp4WH1Pfd3KWB01fqahpCvGYXDfVzXB93xd4e7l-rp3z3_LitNrs8IMolD7VqtK9VUCHUxhF5H7F0xirRlCV6-I2WxkRQkYwTHgJqouB0FFgHdLhit3_eLsa4H6fuQNP3_vgC_gCv6Evt</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Flacco, F.</creator><creator>Kroger, T.</creator><creator>De Luca, A.</creator><creator>Khatib, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>A depth space approach to human-robot collision avoidance</title><author>Flacco, F. ; Kroger, T. ; De Luca, A. ; Khatib, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-cd4f5bd4c4ccd69aabbe3896741f883b0577266e04ea691b0c35aac95e13dc393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aerospace electronics</topic><topic>Collision avoidance</topic><topic>Manipulators</topic><topic>Robot sensing systems</topic><topic>Trajectory</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Flacco, F.</creatorcontrib><creatorcontrib>Kroger, T.</creatorcontrib><creatorcontrib>De Luca, A.</creatorcontrib><creatorcontrib>Khatib, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Flacco, F.</au><au>Kroger, T.</au><au>De Luca, A.</au><au>Khatib, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A depth space approach to human-robot collision avoidance</atitle><btitle>2012 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2012-05</date><risdate>2012</risdate><spage>338</spage><epage>345</epage><pages>338-345</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781467314039</isbn><isbn>146731403X</isbn><eisbn>9781467314046</eisbn><eisbn>1467315788</eisbn><eisbn>1467314056</eisbn><eisbn>9781467314053</eisbn><eisbn>9781467315784</eisbn><eisbn>1467314048</eisbn><abstract>In this paper a real-time collision avoidance approach is presented for safe human-robot coexistence. The main contribution is a fast method to evaluate distances between the robot and possibly moving obstacles (including humans), based on the concept of depth space. The distances are used to generate repulsive vectors that are used to control the robot while executing a generic motion task. The repulsive vectors can also take advantage of an estimation of the obstacle velocity. In order to preserve the execution of a Cartesian task with a redundant manipulator, a simple collision avoidance algorithm has been implemented where different reaction behaviors are set up for the end-effector and for other control points along the robot structure. The complete collision avoidance framework, from perception of the environment to joint-level robot control, is presented for a 7-dof KUKA Light-Weight-Robot IV using the Microsoft Kinect sensor. Experimental results are reported for dynamic environments with obstacles and a human.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2012.6225245</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1050-4729 |
ispartof | 2012 IEEE International Conference on Robotics and Automation, 2012, p.338-345 |
issn | 1050-4729 2577-087X |
language | eng |
recordid | cdi_ieee_primary_6225245 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerospace electronics Collision avoidance Manipulators Robot sensing systems Trajectory Vectors |
title | A depth space approach to human-robot collision avoidance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A13%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20depth%20space%20approach%20to%20human-robot%20collision%20avoidance&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Flacco,%20F.&rft.date=2012-05&rft.spage=338&rft.epage=345&rft.pages=338-345&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781467314039&rft.isbn_list=146731403X&rft_id=info:doi/10.1109/ICRA.2012.6225245&rft_dat=%3Cieee_6IE%3E6225245%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314046&rft.eisbn_list=1467315788&rft.eisbn_list=1467314056&rft.eisbn_list=9781467314053&rft.eisbn_list=9781467315784&rft.eisbn_list=1467314048&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6225245&rfr_iscdi=true |