Cooperative vision-aided inertial navigation using overlapping views

In this paper, we study the problem of Cooperative Localization (CL) for two robots, each equipped with an Inertial Measurement Unit (IMU) and a camera. We present an algorithm that enables the robots to exploit common features, observed over a sliding-window time horizon, in order to improve the lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Melnyk, I. V., Hesch, J. A., Roumeliotis, S. I.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 943
container_issue
container_start_page 936
container_title
container_volume
creator Melnyk, I. V.
Hesch, J. A.
Roumeliotis, S. I.
description In this paper, we study the problem of Cooperative Localization (CL) for two robots, each equipped with an Inertial Measurement Unit (IMU) and a camera. We present an algorithm that enables the robots to exploit common features, observed over a sliding-window time horizon, in order to improve the localization accuracy of both vehicles. In contrast to existing CL methods, which require robot-to-robot distance and/or bearing measurements to resolve the robots' relative position and orientation (pose), our approach recovers the relative pose through indirect information from the commonly observed features. Moreover, we analyze the system observability properties to determine how many degrees of freedom (d.o.f.) of the relative transformation can be computed under different measurement scenarios. Lastly, we present simulation results to evaluate the performance of the proposed method.
doi_str_mv 10.1109/ICRA.2012.6225219
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6225219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6225219</ieee_id><sourcerecordid>6225219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-965c6676961e601d83b923aa844ce7f73d6d0b1fd170f30c8a14c3fd4e8622753</originalsourceid><addsrcrecordid>eNpVkN1Kw0AUhNc_MNY-gHiTF0g9Z3dzNntZ4l-hIIiCd2WbPSkrMQnZGPHtrdgbr2ZgPgZmhLhCWCCCvVmVz8uFBJQLkjKXaI_E3JoCNRmFGjQdi0TmxmRQmLeTf5mypyJByCHTRtpzcRHjOwAoRZSI27Lreh7cGCZOpxBD12YuePZpaHkYg2vS1k1htwe6Nv2Mod2l3cRD4_r-10-Bv-KlOKtdE3l-0Jl4vb97KR-z9dPDqlyus0oSjZmlvCIyZAmZAH2htlYq5wqtKza1UZ48bLH2aKBWUBUOdaVqr7nYjza5monrv97AzJt-CB9u-N4cDlE_BUZQEw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Cooperative vision-aided inertial navigation using overlapping views</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Melnyk, I. V. ; Hesch, J. A. ; Roumeliotis, S. I.</creator><creatorcontrib>Melnyk, I. V. ; Hesch, J. A. ; Roumeliotis, S. I.</creatorcontrib><description>In this paper, we study the problem of Cooperative Localization (CL) for two robots, each equipped with an Inertial Measurement Unit (IMU) and a camera. We present an algorithm that enables the robots to exploit common features, observed over a sliding-window time horizon, in order to improve the localization accuracy of both vehicles. In contrast to existing CL methods, which require robot-to-robot distance and/or bearing measurements to resolve the robots' relative position and orientation (pose), our approach recovers the relative pose through indirect information from the commonly observed features. Moreover, we analyze the system observability properties to determine how many degrees of freedom (d.o.f.) of the relative transformation can be computed under different measurement scenarios. Lastly, we present simulation results to evaluate the performance of the proposed method.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781467314039</identifier><identifier>ISBN: 146731403X</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 9781467314046</identifier><identifier>EISBN: 1467315788</identifier><identifier>EISBN: 1467314056</identifier><identifier>EISBN: 9781467314053</identifier><identifier>EISBN: 9781467315784</identifier><identifier>EISBN: 1467314048</identifier><identifier>DOI: 10.1109/ICRA.2012.6225219</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Covariance matrix ; Robot kinematics ; Robot vision systems ; Vectors ; Vehicles</subject><ispartof>2012 IEEE International Conference on Robotics and Automation, 2012, p.936-943</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-965c6676961e601d83b923aa844ce7f73d6d0b1fd170f30c8a14c3fd4e8622753</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6225219$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6225219$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Melnyk, I. V.</creatorcontrib><creatorcontrib>Hesch, J. A.</creatorcontrib><creatorcontrib>Roumeliotis, S. I.</creatorcontrib><title>Cooperative vision-aided inertial navigation using overlapping views</title><title>2012 IEEE International Conference on Robotics and Automation</title><addtitle>ICRA</addtitle><description>In this paper, we study the problem of Cooperative Localization (CL) for two robots, each equipped with an Inertial Measurement Unit (IMU) and a camera. We present an algorithm that enables the robots to exploit common features, observed over a sliding-window time horizon, in order to improve the localization accuracy of both vehicles. In contrast to existing CL methods, which require robot-to-robot distance and/or bearing measurements to resolve the robots' relative position and orientation (pose), our approach recovers the relative pose through indirect information from the commonly observed features. Moreover, we analyze the system observability properties to determine how many degrees of freedom (d.o.f.) of the relative transformation can be computed under different measurement scenarios. Lastly, we present simulation results to evaluate the performance of the proposed method.</description><subject>Cameras</subject><subject>Covariance matrix</subject><subject>Robot kinematics</subject><subject>Robot vision systems</subject><subject>Vectors</subject><subject>Vehicles</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781467314039</isbn><isbn>146731403X</isbn><isbn>9781467314046</isbn><isbn>1467315788</isbn><isbn>1467314056</isbn><isbn>9781467314053</isbn><isbn>9781467315784</isbn><isbn>1467314048</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkN1Kw0AUhNc_MNY-gHiTF0g9Z3dzNntZ4l-hIIiCd2WbPSkrMQnZGPHtrdgbr2ZgPgZmhLhCWCCCvVmVz8uFBJQLkjKXaI_E3JoCNRmFGjQdi0TmxmRQmLeTf5mypyJByCHTRtpzcRHjOwAoRZSI27Lreh7cGCZOpxBD12YuePZpaHkYg2vS1k1htwe6Nv2Mod2l3cRD4_r-10-Bv-KlOKtdE3l-0Jl4vb97KR-z9dPDqlyus0oSjZmlvCIyZAmZAH2htlYq5wqtKza1UZ48bLH2aKBWUBUOdaVqr7nYjza5monrv97AzJt-CB9u-N4cDlE_BUZQEw</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Melnyk, I. V.</creator><creator>Hesch, J. A.</creator><creator>Roumeliotis, S. I.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20120101</creationdate><title>Cooperative vision-aided inertial navigation using overlapping views</title><author>Melnyk, I. V. ; Hesch, J. A. ; Roumeliotis, S. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-965c6676961e601d83b923aa844ce7f73d6d0b1fd170f30c8a14c3fd4e8622753</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cameras</topic><topic>Covariance matrix</topic><topic>Robot kinematics</topic><topic>Robot vision systems</topic><topic>Vectors</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Melnyk, I. V.</creatorcontrib><creatorcontrib>Hesch, J. A.</creatorcontrib><creatorcontrib>Roumeliotis, S. I.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Melnyk, I. V.</au><au>Hesch, J. A.</au><au>Roumeliotis, S. I.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Cooperative vision-aided inertial navigation using overlapping views</atitle><btitle>2012 IEEE International Conference on Robotics and Automation</btitle><stitle>ICRA</stitle><date>2012-01-01</date><risdate>2012</risdate><spage>936</spage><epage>943</epage><pages>936-943</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781467314039</isbn><isbn>146731403X</isbn><eisbn>9781467314046</eisbn><eisbn>1467315788</eisbn><eisbn>1467314056</eisbn><eisbn>9781467314053</eisbn><eisbn>9781467315784</eisbn><eisbn>1467314048</eisbn><abstract>In this paper, we study the problem of Cooperative Localization (CL) for two robots, each equipped with an Inertial Measurement Unit (IMU) and a camera. We present an algorithm that enables the robots to exploit common features, observed over a sliding-window time horizon, in order to improve the localization accuracy of both vehicles. In contrast to existing CL methods, which require robot-to-robot distance and/or bearing measurements to resolve the robots' relative position and orientation (pose), our approach recovers the relative pose through indirect information from the commonly observed features. Moreover, we analyze the system observability properties to determine how many degrees of freedom (d.o.f.) of the relative transformation can be computed under different measurement scenarios. Lastly, we present simulation results to evaluate the performance of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICRA.2012.6225219</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2012 IEEE International Conference on Robotics and Automation, 2012, p.936-943
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_6225219
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Covariance matrix
Robot kinematics
Robot vision systems
Vectors
Vehicles
title Cooperative vision-aided inertial navigation using overlapping views
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A47%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Cooperative%20vision-aided%20inertial%20navigation%20using%20overlapping%20views&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Melnyk,%20I.%20V.&rft.date=2012-01-01&rft.spage=936&rft.epage=943&rft.pages=936-943&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781467314039&rft.isbn_list=146731403X&rft_id=info:doi/10.1109/ICRA.2012.6225219&rft_dat=%3Cieee_6IE%3E6225219%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467314046&rft.eisbn_list=1467315788&rft.eisbn_list=1467314056&rft.eisbn_list=9781467314053&rft.eisbn_list=9781467315784&rft.eisbn_list=1467314048&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6225219&rfr_iscdi=true