Heterogeneous partitioning of chain structured image processing tasks

Many computer vision tasks, such as image understanding, pattern recognition, dynamic scene analysis, etc., can be cast as pipelined algorithms. These tasks can be decomposed into a set of subtasks which are by their nature heterogeneous; at the lowest level, image processing operations have a massi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iqbal, M.A., Shaaban, M.E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 311
container_issue
container_start_page 302
container_title
container_volume
creator Iqbal, M.A.
Shaaban, M.E.
description Many computer vision tasks, such as image understanding, pattern recognition, dynamic scene analysis, etc., can be cast as pipelined algorithms. These tasks can be decomposed into a set of subtasks which are by their nature heterogeneous; at the lowest level, image processing operations have a massive SIMD type of parallelism, while high level image understanding computations exhibit coarse grain MIMD type characteristics. By partitioning the application task onto different machines that communicate via high speed links, each level or stage of processing can be executed simultaneously on the machine to which it is best suited. Such a network of heterogeneous machines may be able to provide a total completion time that is shorter than the execution time that can be obtained by running the entire program on any single machine. It is shown that a chain structured parallel or pipelined application task can be efficiently partitioned provided the multiple computer system is composed of two heterogenous processors.
doi_str_mv 10.1109/CAMP.1993.622485
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_622485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>622485</ieee_id><sourcerecordid>622485</sourcerecordid><originalsourceid>FETCH-LOGICAL-i89t-3b79e4c9f30e21be3516b8e6e403cf04f0630b7a4b8d27e5621b967ff155b85f3</originalsourceid><addsrcrecordid>eNotj8tOwzAURC0hJKB0j1j5BxKun7GXVVQoUhEsuq_s9DqYRxLZzoK_J6jMZjZHRzOE3DGoGQP70G5e3mpmrag159KoC3IDhhmtJAd2RdY5f8ASpQxofk22OyyYxh4HHOdMJ5dKLHEc4tDTMdDu3cWB5pLmrswJTzR-ux7plMYOc_6Disuf-ZZcBveVcf3fK3J43B7aXbV_fXpuN_sqGlsq4RuLsrNBAHLmUSimvUGNEkQXQAbQAnzjpDcn3qDSC2R1EwJTyhsVxIrcn7UREY9TWsakn-P5p_gFeAxJuA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Heterogeneous partitioning of chain structured image processing tasks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Iqbal, M.A. ; Shaaban, M.E.</creator><creatorcontrib>Iqbal, M.A. ; Shaaban, M.E.</creatorcontrib><description>Many computer vision tasks, such as image understanding, pattern recognition, dynamic scene analysis, etc., can be cast as pipelined algorithms. These tasks can be decomposed into a set of subtasks which are by their nature heterogeneous; at the lowest level, image processing operations have a massive SIMD type of parallelism, while high level image understanding computations exhibit coarse grain MIMD type characteristics. By partitioning the application task onto different machines that communicate via high speed links, each level or stage of processing can be executed simultaneously on the machine to which it is best suited. Such a network of heterogeneous machines may be able to provide a total completion time that is shorter than the execution time that can be obtained by running the entire program on any single machine. It is shown that a chain structured parallel or pipelined application task can be efficiently partitioned provided the multiple computer system is composed of two heterogenous processors.</description><identifier>ISBN: 0818654201</identifier><identifier>ISBN: 9780818654206</identifier><identifier>DOI: 10.1109/CAMP.1993.622485</identifier><language>eng</language><publisher>IEEE</publisher><subject>Application software ; Computer vision ; Concurrent computing ; Image analysis ; Image processing ; Parallel processing ; Partitioning algorithms ; Pattern recognition ; Pipeline processing ; Signal processing</subject><ispartof>1993 Computer Architectures for Machine Perception, 1993, p.302-311</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/622485$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,4038,4039,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/622485$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iqbal, M.A.</creatorcontrib><creatorcontrib>Shaaban, M.E.</creatorcontrib><title>Heterogeneous partitioning of chain structured image processing tasks</title><title>1993 Computer Architectures for Machine Perception</title><addtitle>CAMP</addtitle><description>Many computer vision tasks, such as image understanding, pattern recognition, dynamic scene analysis, etc., can be cast as pipelined algorithms. These tasks can be decomposed into a set of subtasks which are by their nature heterogeneous; at the lowest level, image processing operations have a massive SIMD type of parallelism, while high level image understanding computations exhibit coarse grain MIMD type characteristics. By partitioning the application task onto different machines that communicate via high speed links, each level or stage of processing can be executed simultaneously on the machine to which it is best suited. Such a network of heterogeneous machines may be able to provide a total completion time that is shorter than the execution time that can be obtained by running the entire program on any single machine. It is shown that a chain structured parallel or pipelined application task can be efficiently partitioned provided the multiple computer system is composed of two heterogenous processors.</description><subject>Application software</subject><subject>Computer vision</subject><subject>Concurrent computing</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Parallel processing</subject><subject>Partitioning algorithms</subject><subject>Pattern recognition</subject><subject>Pipeline processing</subject><subject>Signal processing</subject><isbn>0818654201</isbn><isbn>9780818654206</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1993</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8tOwzAURC0hJKB0j1j5BxKun7GXVVQoUhEsuq_s9DqYRxLZzoK_J6jMZjZHRzOE3DGoGQP70G5e3mpmrag159KoC3IDhhmtJAd2RdY5f8ASpQxofk22OyyYxh4HHOdMJ5dKLHEc4tDTMdDu3cWB5pLmrswJTzR-ux7plMYOc_6Disuf-ZZcBveVcf3fK3J43B7aXbV_fXpuN_sqGlsq4RuLsrNBAHLmUSimvUGNEkQXQAbQAnzjpDcn3qDSC2R1EwJTyhsVxIrcn7UREY9TWsakn-P5p_gFeAxJuA</recordid><startdate>1993</startdate><enddate>1993</enddate><creator>Iqbal, M.A.</creator><creator>Shaaban, M.E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1993</creationdate><title>Heterogeneous partitioning of chain structured image processing tasks</title><author>Iqbal, M.A. ; Shaaban, M.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i89t-3b79e4c9f30e21be3516b8e6e403cf04f0630b7a4b8d27e5621b967ff155b85f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Application software</topic><topic>Computer vision</topic><topic>Concurrent computing</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Parallel processing</topic><topic>Partitioning algorithms</topic><topic>Pattern recognition</topic><topic>Pipeline processing</topic><topic>Signal processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, M.A.</creatorcontrib><creatorcontrib>Shaaban, M.E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iqbal, M.A.</au><au>Shaaban, M.E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Heterogeneous partitioning of chain structured image processing tasks</atitle><btitle>1993 Computer Architectures for Machine Perception</btitle><stitle>CAMP</stitle><date>1993</date><risdate>1993</risdate><spage>302</spage><epage>311</epage><pages>302-311</pages><isbn>0818654201</isbn><isbn>9780818654206</isbn><abstract>Many computer vision tasks, such as image understanding, pattern recognition, dynamic scene analysis, etc., can be cast as pipelined algorithms. These tasks can be decomposed into a set of subtasks which are by their nature heterogeneous; at the lowest level, image processing operations have a massive SIMD type of parallelism, while high level image understanding computations exhibit coarse grain MIMD type characteristics. By partitioning the application task onto different machines that communicate via high speed links, each level or stage of processing can be executed simultaneously on the machine to which it is best suited. Such a network of heterogeneous machines may be able to provide a total completion time that is shorter than the execution time that can be obtained by running the entire program on any single machine. It is shown that a chain structured parallel or pipelined application task can be efficiently partitioned provided the multiple computer system is composed of two heterogenous processors.</abstract><pub>IEEE</pub><doi>10.1109/CAMP.1993.622485</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0818654201
ispartof 1993 Computer Architectures for Machine Perception, 1993, p.302-311
issn
language eng
recordid cdi_ieee_primary_622485
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Application software
Computer vision
Concurrent computing
Image analysis
Image processing
Parallel processing
Partitioning algorithms
Pattern recognition
Pipeline processing
Signal processing
title Heterogeneous partitioning of chain structured image processing tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Heterogeneous%20partitioning%20of%20chain%20structured%20image%20processing%20tasks&rft.btitle=1993%20Computer%20Architectures%20for%20Machine%20Perception&rft.au=Iqbal,%20M.A.&rft.date=1993&rft.spage=302&rft.epage=311&rft.pages=302-311&rft.isbn=0818654201&rft.isbn_list=9780818654206&rft_id=info:doi/10.1109/CAMP.1993.622485&rft_dat=%3Cieee_6IE%3E622485%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=622485&rfr_iscdi=true