Time averaging and threshold effect on statistics of residential power consumption
With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for provid...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Chon Hou Wai Lai, S. W. Zareipour, H. Messier, G. G. Schellenberg, A. |
description | With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion. |
doi_str_mv | 10.1109/ISGT-MidEast.2011.6220825 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6220825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220825</ieee_id><sourcerecordid>6220825</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-807d2c03fbbcbb58f3278c4ac629ee4a2071d172ee4a65a3dcf644930a1bd4573</originalsourceid><addsrcrecordid>eNo1kNtKAzEYhCMiqHWfwJv4ALvmtMnupZRaCxVB9778m_xpI3tiExXf3op1bmY-BuZiCLnjrOCc1febt3WTPwe3gpgKwTgvtBCsEuUZyWpTcaWNZHVV8nNy_Q_GXJIsxnd2lCm5NPqKvDahRwqfOMM-DHsKg6PpMGM8jJ2j6D3aRMeBxgQpxBRspKOnxz44HFKAjk7jF87UjkP86KcUxuGGXHjoImYnX5DmcdUsn_Lty3qzfNjmoWYpr5hxwjLp29a2bVl5KUxlFVgtakQFghnuuBG_WZcgnfVaqVoy4K1TpZELcvs3GxBxN82hh_l7d3pB_gC5iVTP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time averaging and threshold effect on statistics of residential power consumption</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chon Hou Wai ; Lai, S. W. ; Zareipour, H. ; Messier, G. G. ; Schellenberg, A.</creator><creatorcontrib>Chon Hou Wai ; Lai, S. W. ; Zareipour, H. ; Messier, G. G. ; Schellenberg, A.</creatorcontrib><description>With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion.</description><identifier>ISBN: 1467309877</identifier><identifier>ISBN: 9781467309875</identifier><identifier>EISBN: 9781467309851</identifier><identifier>EISBN: 1467309869</identifier><identifier>EISBN: 1467309850</identifier><identifier>EISBN: 9781467309868</identifier><identifier>DOI: 10.1109/ISGT-MidEast.2011.6220825</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; demand response ; Electricity ; energy resolution ; Home appliances ; Power demand ; Power measurement ; residential load modeling ; Smart grids</subject><ispartof>2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chon Hou Wai</creatorcontrib><creatorcontrib>Lai, S. W.</creatorcontrib><creatorcontrib>Zareipour, H.</creatorcontrib><creatorcontrib>Messier, G. G.</creatorcontrib><creatorcontrib>Schellenberg, A.</creatorcontrib><title>Time averaging and threshold effect on statistics of residential power consumption</title><title>2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East</title><addtitle>ISGT-MidEast</addtitle><description>With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion.</description><subject>Companies</subject><subject>demand response</subject><subject>Electricity</subject><subject>energy resolution</subject><subject>Home appliances</subject><subject>Power demand</subject><subject>Power measurement</subject><subject>residential load modeling</subject><subject>Smart grids</subject><isbn>1467309877</isbn><isbn>9781467309875</isbn><isbn>9781467309851</isbn><isbn>1467309869</isbn><isbn>1467309850</isbn><isbn>9781467309868</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKAzEYhCMiqHWfwJv4ALvmtMnupZRaCxVB9778m_xpI3tiExXf3op1bmY-BuZiCLnjrOCc1febt3WTPwe3gpgKwTgvtBCsEuUZyWpTcaWNZHVV8nNy_Q_GXJIsxnd2lCm5NPqKvDahRwqfOMM-DHsKg6PpMGM8jJ2j6D3aRMeBxgQpxBRspKOnxz44HFKAjk7jF87UjkP86KcUxuGGXHjoImYnX5DmcdUsn_Lty3qzfNjmoWYpr5hxwjLp29a2bVl5KUxlFVgtakQFghnuuBG_WZcgnfVaqVoy4K1TpZELcvs3GxBxN82hh_l7d3pB_gC5iVTP</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Chon Hou Wai</creator><creator>Lai, S. W.</creator><creator>Zareipour, H.</creator><creator>Messier, G. G.</creator><creator>Schellenberg, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Time averaging and threshold effect on statistics of residential power consumption</title><author>Chon Hou Wai ; Lai, S. W. ; Zareipour, H. ; Messier, G. G. ; Schellenberg, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-807d2c03fbbcbb58f3278c4ac629ee4a2071d172ee4a65a3dcf644930a1bd4573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Companies</topic><topic>demand response</topic><topic>Electricity</topic><topic>energy resolution</topic><topic>Home appliances</topic><topic>Power demand</topic><topic>Power measurement</topic><topic>residential load modeling</topic><topic>Smart grids</topic><toplevel>online_resources</toplevel><creatorcontrib>Chon Hou Wai</creatorcontrib><creatorcontrib>Lai, S. W.</creatorcontrib><creatorcontrib>Zareipour, H.</creatorcontrib><creatorcontrib>Messier, G. G.</creatorcontrib><creatorcontrib>Schellenberg, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chon Hou Wai</au><au>Lai, S. W.</au><au>Zareipour, H.</au><au>Messier, G. G.</au><au>Schellenberg, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time averaging and threshold effect on statistics of residential power consumption</atitle><btitle>2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East</btitle><stitle>ISGT-MidEast</stitle><date>2011-12</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1467309877</isbn><isbn>9781467309875</isbn><eisbn>9781467309851</eisbn><eisbn>1467309869</eisbn><eisbn>1467309850</eisbn><eisbn>9781467309868</eisbn><abstract>With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion.</abstract><pub>IEEE</pub><doi>10.1109/ISGT-MidEast.2011.6220825</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467309877 |
ispartof | 2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East, 2011, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6220825 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Companies demand response Electricity energy resolution Home appliances Power demand Power measurement residential load modeling Smart grids |
title | Time averaging and threshold effect on statistics of residential power consumption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20averaging%20and%20threshold%20effect%20on%20statistics%20of%20residential%20power%20consumption&rft.btitle=2011%20IEEE%20PES%20Conference%20on%20Innovative%20Smart%20Grid%20Technologies%20-%20Middle%20East&rft.au=Chon%20Hou%20Wai&rft.date=2011-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1467309877&rft.isbn_list=9781467309875&rft_id=info:doi/10.1109/ISGT-MidEast.2011.6220825&rft_dat=%3Cieee_6IE%3E6220825%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467309851&rft.eisbn_list=1467309869&rft.eisbn_list=1467309850&rft.eisbn_list=9781467309868&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6220825&rfr_iscdi=true |