Time averaging and threshold effect on statistics of residential power consumption

With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for provid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chon Hou Wai, Lai, S. W., Zareipour, H., Messier, G. G., Schellenberg, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Chon Hou Wai
Lai, S. W.
Zareipour, H.
Messier, G. G.
Schellenberg, A.
description With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion.
doi_str_mv 10.1109/ISGT-MidEast.2011.6220825
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6220825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220825</ieee_id><sourcerecordid>6220825</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-807d2c03fbbcbb58f3278c4ac629ee4a2071d172ee4a65a3dcf644930a1bd4573</originalsourceid><addsrcrecordid>eNo1kNtKAzEYhCMiqHWfwJv4ALvmtMnupZRaCxVB9778m_xpI3tiExXf3op1bmY-BuZiCLnjrOCc1febt3WTPwe3gpgKwTgvtBCsEuUZyWpTcaWNZHVV8nNy_Q_GXJIsxnd2lCm5NPqKvDahRwqfOMM-DHsKg6PpMGM8jJ2j6D3aRMeBxgQpxBRspKOnxz44HFKAjk7jF87UjkP86KcUxuGGXHjoImYnX5DmcdUsn_Lty3qzfNjmoWYpr5hxwjLp29a2bVl5KUxlFVgtakQFghnuuBG_WZcgnfVaqVoy4K1TpZELcvs3GxBxN82hh_l7d3pB_gC5iVTP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Time averaging and threshold effect on statistics of residential power consumption</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chon Hou Wai ; Lai, S. W. ; Zareipour, H. ; Messier, G. G. ; Schellenberg, A.</creator><creatorcontrib>Chon Hou Wai ; Lai, S. W. ; Zareipour, H. ; Messier, G. G. ; Schellenberg, A.</creatorcontrib><description>With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion.</description><identifier>ISBN: 1467309877</identifier><identifier>ISBN: 9781467309875</identifier><identifier>EISBN: 9781467309851</identifier><identifier>EISBN: 1467309869</identifier><identifier>EISBN: 1467309850</identifier><identifier>EISBN: 9781467309868</identifier><identifier>DOI: 10.1109/ISGT-MidEast.2011.6220825</identifier><language>eng</language><publisher>IEEE</publisher><subject>Companies ; demand response ; Electricity ; energy resolution ; Home appliances ; Power demand ; Power measurement ; residential load modeling ; Smart grids</subject><ispartof>2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East, 2011, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chon Hou Wai</creatorcontrib><creatorcontrib>Lai, S. W.</creatorcontrib><creatorcontrib>Zareipour, H.</creatorcontrib><creatorcontrib>Messier, G. G.</creatorcontrib><creatorcontrib>Schellenberg, A.</creatorcontrib><title>Time averaging and threshold effect on statistics of residential power consumption</title><title>2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East</title><addtitle>ISGT-MidEast</addtitle><description>With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion.</description><subject>Companies</subject><subject>demand response</subject><subject>Electricity</subject><subject>energy resolution</subject><subject>Home appliances</subject><subject>Power demand</subject><subject>Power measurement</subject><subject>residential load modeling</subject><subject>Smart grids</subject><isbn>1467309877</isbn><isbn>9781467309875</isbn><isbn>9781467309851</isbn><isbn>1467309869</isbn><isbn>1467309850</isbn><isbn>9781467309868</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kNtKAzEYhCMiqHWfwJv4ALvmtMnupZRaCxVB9778m_xpI3tiExXf3op1bmY-BuZiCLnjrOCc1febt3WTPwe3gpgKwTgvtBCsEuUZyWpTcaWNZHVV8nNy_Q_GXJIsxnd2lCm5NPqKvDahRwqfOMM-DHsKg6PpMGM8jJ2j6D3aRMeBxgQpxBRspKOnxz44HFKAjk7jF87UjkP86KcUxuGGXHjoImYnX5DmcdUsn_Lty3qzfNjmoWYpr5hxwjLp29a2bVl5KUxlFVgtakQFghnuuBG_WZcgnfVaqVoy4K1TpZELcvs3GxBxN82hh_l7d3pB_gC5iVTP</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Chon Hou Wai</creator><creator>Lai, S. W.</creator><creator>Zareipour, H.</creator><creator>Messier, G. G.</creator><creator>Schellenberg, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Time averaging and threshold effect on statistics of residential power consumption</title><author>Chon Hou Wai ; Lai, S. W. ; Zareipour, H. ; Messier, G. G. ; Schellenberg, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-807d2c03fbbcbb58f3278c4ac629ee4a2071d172ee4a65a3dcf644930a1bd4573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Companies</topic><topic>demand response</topic><topic>Electricity</topic><topic>energy resolution</topic><topic>Home appliances</topic><topic>Power demand</topic><topic>Power measurement</topic><topic>residential load modeling</topic><topic>Smart grids</topic><toplevel>online_resources</toplevel><creatorcontrib>Chon Hou Wai</creatorcontrib><creatorcontrib>Lai, S. W.</creatorcontrib><creatorcontrib>Zareipour, H.</creatorcontrib><creatorcontrib>Messier, G. G.</creatorcontrib><creatorcontrib>Schellenberg, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chon Hou Wai</au><au>Lai, S. W.</au><au>Zareipour, H.</au><au>Messier, G. G.</au><au>Schellenberg, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Time averaging and threshold effect on statistics of residential power consumption</atitle><btitle>2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East</btitle><stitle>ISGT-MidEast</stitle><date>2011-12</date><risdate>2011</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1467309877</isbn><isbn>9781467309875</isbn><eisbn>9781467309851</eisbn><eisbn>1467309869</eisbn><eisbn>1467309850</eisbn><eisbn>9781467309868</eisbn><abstract>With the help of smart meters, power companies can remotely collect customers' power consumption and setup demand response programs accordingly. While there is no standard for the metering interval, many power companies collect data at hourly basis. Hourly measured data is sufficient for providing billing information and feedback on energy use. However, it does not reflect the true inter-hour dynamics of power and energy usage of residential or commercial consumers. Higher resolution electricity consumption information is important in setting up real-time demand response programs. In order to increase the information value of the collected data, power companies may simply increase the metering resolution or to adapt alternative metering methods. Threshold metering, which acquires data only when the change of measurements exceeds a certain level, is an alternative metering option. This paper compares interval and threshold metering methods with different settings for measuring domestic power consumptions. Instantaneous power consumption data are collected from four different houses in Calgary, Canada and these data are used to generate test data for interval and threshold metering study. Numerical results of statistical and accuracy measures and data size tradeoffs are provided to support our discussion.</abstract><pub>IEEE</pub><doi>10.1109/ISGT-MidEast.2011.6220825</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467309877
ispartof 2011 IEEE PES Conference on Innovative Smart Grid Technologies - Middle East, 2011, p.1-6
issn
language eng
recordid cdi_ieee_primary_6220825
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Companies
demand response
Electricity
energy resolution
Home appliances
Power demand
Power measurement
residential load modeling
Smart grids
title Time averaging and threshold effect on statistics of residential power consumption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T16%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Time%20averaging%20and%20threshold%20effect%20on%20statistics%20of%20residential%20power%20consumption&rft.btitle=2011%20IEEE%20PES%20Conference%20on%20Innovative%20Smart%20Grid%20Technologies%20-%20Middle%20East&rft.au=Chon%20Hou%20Wai&rft.date=2011-12&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1467309877&rft.isbn_list=9781467309875&rft_id=info:doi/10.1109/ISGT-MidEast.2011.6220825&rft_dat=%3Cieee_6IE%3E6220825%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467309851&rft.eisbn_list=1467309869&rft.eisbn_list=1467309850&rft.eisbn_list=9781467309868&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6220825&rfr_iscdi=true