Detection of obstructive sleep apnea through ECG signal features
Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Almazaydeh, Laiali Elleithy, K. Faezipour, M. |
description | Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening. |
doi_str_mv | 10.1109/EIT.2012.6220730 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6220730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220730</ieee_id><sourcerecordid>6220730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2450-c15c4986bd4fa20027c1342272fe157f488dc720296ffaafe358c9f2b6f3a25b3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhccXWGv3gpv5A6l37rx3Sq21UHBT12UyvdNGYlMyieC_N2B1dc7hg29xGLsTMBUC_MN8uZ4iCJwaRLASztjEWyeUGboTDs_ZCIVWBUgrL9jNH_Dm8h9oe80mOX8AwGA0Ht2IPT5TR7GrmgNvEm_K3LX9ML-I55royMPxQIF3-7bpd3s-ny14rnaHUPNEoetbyrfsKoU60-SUY_b-Ml_PXovV22I5e1oVEZWGIgodlXem3KoUEABtFFIhWkwktE3KuW20COhNSiEkktpFn7A0SQbUpRyz-19vRUSbY1t9hvZ7czpD_gBr9k1L</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of obstructive sleep apnea through ECG signal features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Almazaydeh, Laiali ; Elleithy, K. ; Faezipour, M.</creator><creatorcontrib>Almazaydeh, Laiali ; Elleithy, K. ; Faezipour, M.</creatorcontrib><description>Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.</description><identifier>ISSN: 2154-0357</identifier><identifier>ISBN: 1467308196</identifier><identifier>ISBN: 9781467308199</identifier><identifier>EISSN: 2154-0373</identifier><identifier>EISBN: 9781467308182</identifier><identifier>EISBN: 146730817X</identifier><identifier>EISBN: 1467308188</identifier><identifier>EISBN: 9781467308175</identifier><identifier>DOI: 10.1109/EIT.2012.6220730</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; ECG ; Electrocardiography ; Feature extraction ; Kernel ; PSG ; RR interval ; Sleep apnea ; Support vector machines ; SVM</subject><ispartof>2012 IEEE International Conference on Electro/Information Technology, 2012, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2450-c15c4986bd4fa20027c1342272fe157f488dc720296ffaafe358c9f2b6f3a25b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Almazaydeh, Laiali</creatorcontrib><creatorcontrib>Elleithy, K.</creatorcontrib><creatorcontrib>Faezipour, M.</creatorcontrib><title>Detection of obstructive sleep apnea through ECG signal features</title><title>2012 IEEE International Conference on Electro/Information Technology</title><addtitle>EIT</addtitle><description>Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.</description><subject>Accuracy</subject><subject>ECG</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>PSG</subject><subject>RR interval</subject><subject>Sleep apnea</subject><subject>Support vector machines</subject><subject>SVM</subject><issn>2154-0357</issn><issn>2154-0373</issn><isbn>1467308196</isbn><isbn>9781467308199</isbn><isbn>9781467308182</isbn><isbn>146730817X</isbn><isbn>1467308188</isbn><isbn>9781467308175</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhccXWGv3gpv5A6l37rx3Sq21UHBT12UyvdNGYlMyieC_N2B1dc7hg29xGLsTMBUC_MN8uZ4iCJwaRLASztjEWyeUGboTDs_ZCIVWBUgrL9jNH_Dm8h9oe80mOX8AwGA0Ht2IPT5TR7GrmgNvEm_K3LX9ML-I55royMPxQIF3-7bpd3s-ny14rnaHUPNEoetbyrfsKoU60-SUY_b-Ml_PXovV22I5e1oVEZWGIgodlXem3KoUEABtFFIhWkwktE3KuW20COhNSiEkktpFn7A0SQbUpRyz-19vRUSbY1t9hvZ7czpD_gBr9k1L</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Almazaydeh, Laiali</creator><creator>Elleithy, K.</creator><creator>Faezipour, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Detection of obstructive sleep apnea through ECG signal features</title><author>Almazaydeh, Laiali ; Elleithy, K. ; Faezipour, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2450-c15c4986bd4fa20027c1342272fe157f488dc720296ffaafe358c9f2b6f3a25b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>ECG</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>PSG</topic><topic>RR interval</topic><topic>Sleep apnea</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Almazaydeh, Laiali</creatorcontrib><creatorcontrib>Elleithy, K.</creatorcontrib><creatorcontrib>Faezipour, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Almazaydeh, Laiali</au><au>Elleithy, K.</au><au>Faezipour, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of obstructive sleep apnea through ECG signal features</atitle><btitle>2012 IEEE International Conference on Electro/Information Technology</btitle><stitle>EIT</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2154-0357</issn><eissn>2154-0373</eissn><isbn>1467308196</isbn><isbn>9781467308199</isbn><eisbn>9781467308182</eisbn><eisbn>146730817X</eisbn><eisbn>1467308188</eisbn><eisbn>9781467308175</eisbn><abstract>Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.</abstract><pub>IEEE</pub><doi>10.1109/EIT.2012.6220730</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2154-0357 |
ispartof | 2012 IEEE International Conference on Electro/Information Technology, 2012, p.1-6 |
issn | 2154-0357 2154-0373 |
language | eng |
recordid | cdi_ieee_primary_6220730 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy ECG Electrocardiography Feature extraction Kernel PSG RR interval Sleep apnea Support vector machines SVM |
title | Detection of obstructive sleep apnea through ECG signal features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20obstructive%20sleep%20apnea%20through%20ECG%20signal%20features&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Electro/Information%20Technology&rft.au=Almazaydeh,%20Laiali&rft.date=2012-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2154-0357&rft.eissn=2154-0373&rft.isbn=1467308196&rft.isbn_list=9781467308199&rft_id=info:doi/10.1109/EIT.2012.6220730&rft_dat=%3Cieee_6IE%3E6220730%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467308182&rft.eisbn_list=146730817X&rft.eisbn_list=1467308188&rft.eisbn_list=9781467308175&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6220730&rfr_iscdi=true |