Detection of obstructive sleep apnea through ECG signal features

Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Almazaydeh, Laiali, Elleithy, K., Faezipour, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Almazaydeh, Laiali
Elleithy, K.
Faezipour, M.
description Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.
doi_str_mv 10.1109/EIT.2012.6220730
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6220730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6220730</ieee_id><sourcerecordid>6220730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2450-c15c4986bd4fa20027c1342272fe157f488dc720296ffaafe358c9f2b6f3a25b3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhccXWGv3gpv5A6l37rx3Sq21UHBT12UyvdNGYlMyieC_N2B1dc7hg29xGLsTMBUC_MN8uZ4iCJwaRLASztjEWyeUGboTDs_ZCIVWBUgrL9jNH_Dm8h9oe80mOX8AwGA0Ht2IPT5TR7GrmgNvEm_K3LX9ML-I55royMPxQIF3-7bpd3s-ny14rnaHUPNEoetbyrfsKoU60-SUY_b-Ml_PXovV22I5e1oVEZWGIgodlXem3KoUEABtFFIhWkwktE3KuW20COhNSiEkktpFn7A0SQbUpRyz-19vRUSbY1t9hvZ7czpD_gBr9k1L</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Detection of obstructive sleep apnea through ECG signal features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Almazaydeh, Laiali ; Elleithy, K. ; Faezipour, M.</creator><creatorcontrib>Almazaydeh, Laiali ; Elleithy, K. ; Faezipour, M.</creatorcontrib><description>Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.</description><identifier>ISSN: 2154-0357</identifier><identifier>ISBN: 1467308196</identifier><identifier>ISBN: 9781467308199</identifier><identifier>EISSN: 2154-0373</identifier><identifier>EISBN: 9781467308182</identifier><identifier>EISBN: 146730817X</identifier><identifier>EISBN: 1467308188</identifier><identifier>EISBN: 9781467308175</identifier><identifier>DOI: 10.1109/EIT.2012.6220730</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; ECG ; Electrocardiography ; Feature extraction ; Kernel ; PSG ; RR interval ; Sleep apnea ; Support vector machines ; SVM</subject><ispartof>2012 IEEE International Conference on Electro/Information Technology, 2012, p.1-6</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2450-c15c4986bd4fa20027c1342272fe157f488dc720296ffaafe358c9f2b6f3a25b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6220730$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6220730$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Almazaydeh, Laiali</creatorcontrib><creatorcontrib>Elleithy, K.</creatorcontrib><creatorcontrib>Faezipour, M.</creatorcontrib><title>Detection of obstructive sleep apnea through ECG signal features</title><title>2012 IEEE International Conference on Electro/Information Technology</title><addtitle>EIT</addtitle><description>Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.</description><subject>Accuracy</subject><subject>ECG</subject><subject>Electrocardiography</subject><subject>Feature extraction</subject><subject>Kernel</subject><subject>PSG</subject><subject>RR interval</subject><subject>Sleep apnea</subject><subject>Support vector machines</subject><subject>SVM</subject><issn>2154-0357</issn><issn>2154-0373</issn><isbn>1467308196</isbn><isbn>9781467308199</isbn><isbn>9781467308182</isbn><isbn>146730817X</isbn><isbn>1467308188</isbn><isbn>9781467308175</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhccXWGv3gpv5A6l37rx3Sq21UHBT12UyvdNGYlMyieC_N2B1dc7hg29xGLsTMBUC_MN8uZ4iCJwaRLASztjEWyeUGboTDs_ZCIVWBUgrL9jNH_Dm8h9oe80mOX8AwGA0Ht2IPT5TR7GrmgNvEm_K3LX9ML-I55royMPxQIF3-7bpd3s-ny14rnaHUPNEoetbyrfsKoU60-SUY_b-Ml_PXovV22I5e1oVEZWGIgodlXem3KoUEABtFFIhWkwktE3KuW20COhNSiEkktpFn7A0SQbUpRyz-19vRUSbY1t9hvZ7czpD_gBr9k1L</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Almazaydeh, Laiali</creator><creator>Elleithy, K.</creator><creator>Faezipour, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>Detection of obstructive sleep apnea through ECG signal features</title><author>Almazaydeh, Laiali ; Elleithy, K. ; Faezipour, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2450-c15c4986bd4fa20027c1342272fe157f488dc720296ffaafe358c9f2b6f3a25b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>ECG</topic><topic>Electrocardiography</topic><topic>Feature extraction</topic><topic>Kernel</topic><topic>PSG</topic><topic>RR interval</topic><topic>Sleep apnea</topic><topic>Support vector machines</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Almazaydeh, Laiali</creatorcontrib><creatorcontrib>Elleithy, K.</creatorcontrib><creatorcontrib>Faezipour, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Almazaydeh, Laiali</au><au>Elleithy, K.</au><au>Faezipour, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Detection of obstructive sleep apnea through ECG signal features</atitle><btitle>2012 IEEE International Conference on Electro/Information Technology</btitle><stitle>EIT</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>2154-0357</issn><eissn>2154-0373</eissn><isbn>1467308196</isbn><isbn>9781467308199</isbn><eisbn>9781467308182</eisbn><eisbn>146730817X</eisbn><eisbn>1467308188</eisbn><eisbn>9781467308175</eisbn><abstract>Obstructive sleep apnea (OSA) is a common disorder in which individuals stop breathing during their sleep. Most of sleep apnea cases are currently undiagnosed because of expenses and practicality limitations of overnight polysomnography (PSG) at sleep labs, where an expert human observer is needed to work over night. New techniques for sleep apnea classification are being developed by bioengineers for most comfortable and timely detection. In this paper, an automated classification algorithm is presented which processes short duration epochs of the electrocardiogram (ECG) data. The automated classification algorithm is based on support vector machines (SVM) and has been trained and tested on sleep apnea recordings from subjects with and without OSA. The results show that our automated classification system can recognize epochs of sleep disorders with a high degree of accuracy, approximately 96.5%. Moreover, the system we developed can be used as a basis for future development of a tool for OSA screening.</abstract><pub>IEEE</pub><doi>10.1109/EIT.2012.6220730</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2154-0357
ispartof 2012 IEEE International Conference on Electro/Information Technology, 2012, p.1-6
issn 2154-0357
2154-0373
language eng
recordid cdi_ieee_primary_6220730
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
ECG
Electrocardiography
Feature extraction
Kernel
PSG
RR interval
Sleep apnea
Support vector machines
SVM
title Detection of obstructive sleep apnea through ECG signal features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Detection%20of%20obstructive%20sleep%20apnea%20through%20ECG%20signal%20features&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Electro/Information%20Technology&rft.au=Almazaydeh,%20Laiali&rft.date=2012-05&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=2154-0357&rft.eissn=2154-0373&rft.isbn=1467308196&rft.isbn_list=9781467308199&rft_id=info:doi/10.1109/EIT.2012.6220730&rft_dat=%3Cieee_6IE%3E6220730%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467308182&rft.eisbn_list=146730817X&rft.eisbn_list=1467308188&rft.eisbn_list=9781467308175&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6220730&rfr_iscdi=true