The convergence analysis for a deformed Newton method with three orders in Banach space

We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rongfei Lin, Yueqing Zhao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 667
container_issue
container_start_page 664
container_title
container_volume
creator Rongfei Lin
Yueqing Zhao
description We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem.
doi_str_mv 10.1109/ISRA.2012.6219277
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6219277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6219277</ieee_id><sourcerecordid>6219277</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b63d8d87de5a7a6804846b23191d70f209f541158a1e7aaaed61bbe27b5ac0ae3</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhUdEUGseQNzcF0icmWR-sqzFn0JR0IDLcpO5MSNNUmaCpW9vwHo2H2fxncVh7FbwTAhe3q8_3peZ5EJmWopSGnPGrkWhTS4l1-acJaWx_13ZS5bE-M3nGM2NUlfss-oImnH4ofBFQ0OAA-6O0UdoxwAIjmb25OCVDtM4QE9TNzo4-KmDqQtEMAZHIYIf4GF2mw7iHhu6YRct7iIlJy5Y9fRYrV7SzdvzerXcpL7kU1rr3FlnjSOFBrXlhS10LXNRCmd4K3nZqkIIZVGQQURyWtQ1SVMrbDhSvmB3f7OeiLb74HsMx-3pivwXimNSpg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The convergence analysis for a deformed Newton method with three orders in Banach space</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rongfei Lin ; Yueqing Zhao</creator><creatorcontrib>Rongfei Lin ; Yueqing Zhao</creatorcontrib><description>We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem.</description><identifier>ISBN: 9781467322058</identifier><identifier>ISBN: 1467322059</identifier><identifier>EISBN: 1467322067</identifier><identifier>EISBN: 9781467322065</identifier><identifier>EISBN: 1467322075</identifier><identifier>EISBN: 9781467322072</identifier><identifier>DOI: 10.1109/ISRA.2012.6219277</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Banach space ; Chebyshev approximation ; Convergence ; Deformed Newton method ; Equations ; Newton method ; Newton-Kantorovich theorem ; Nonlinear operator equation ; Robots</subject><ispartof>2012 IEEE Symposium on Robotics and Applications (ISRA), 2012, p.664-667</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6219277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6219277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rongfei Lin</creatorcontrib><creatorcontrib>Yueqing Zhao</creatorcontrib><title>The convergence analysis for a deformed Newton method with three orders in Banach space</title><title>2012 IEEE Symposium on Robotics and Applications (ISRA)</title><addtitle>ISRA</addtitle><description>We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem.</description><subject>Acceleration</subject><subject>Banach space</subject><subject>Chebyshev approximation</subject><subject>Convergence</subject><subject>Deformed Newton method</subject><subject>Equations</subject><subject>Newton method</subject><subject>Newton-Kantorovich theorem</subject><subject>Nonlinear operator equation</subject><subject>Robots</subject><isbn>9781467322058</isbn><isbn>1467322059</isbn><isbn>1467322067</isbn><isbn>9781467322065</isbn><isbn>1467322075</isbn><isbn>9781467322072</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AUhUdEUGseQNzcF0icmWR-sqzFn0JR0IDLcpO5MSNNUmaCpW9vwHo2H2fxncVh7FbwTAhe3q8_3peZ5EJmWopSGnPGrkWhTS4l1-acJaWx_13ZS5bE-M3nGM2NUlfss-oImnH4ofBFQ0OAA-6O0UdoxwAIjmb25OCVDtM4QE9TNzo4-KmDqQtEMAZHIYIf4GF2mw7iHhu6YRct7iIlJy5Y9fRYrV7SzdvzerXcpL7kU1rr3FlnjSOFBrXlhS10LXNRCmd4K3nZqkIIZVGQQURyWtQ1SVMrbDhSvmB3f7OeiLb74HsMx-3pivwXimNSpg</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Rongfei Lin</creator><creator>Yueqing Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>The convergence analysis for a deformed Newton method with three orders in Banach space</title><author>Rongfei Lin ; Yueqing Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b63d8d87de5a7a6804846b23191d70f209f541158a1e7aaaed61bbe27b5ac0ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Banach space</topic><topic>Chebyshev approximation</topic><topic>Convergence</topic><topic>Deformed Newton method</topic><topic>Equations</topic><topic>Newton method</topic><topic>Newton-Kantorovich theorem</topic><topic>Nonlinear operator equation</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Rongfei Lin</creatorcontrib><creatorcontrib>Yueqing Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rongfei Lin</au><au>Yueqing Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The convergence analysis for a deformed Newton method with three orders in Banach space</atitle><btitle>2012 IEEE Symposium on Robotics and Applications (ISRA)</btitle><stitle>ISRA</stitle><date>2012-06</date><risdate>2012</risdate><spage>664</spage><epage>667</epage><pages>664-667</pages><isbn>9781467322058</isbn><isbn>1467322059</isbn><eisbn>1467322067</eisbn><eisbn>9781467322065</eisbn><eisbn>1467322075</eisbn><eisbn>9781467322072</eisbn><abstract>We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem.</abstract><pub>IEEE</pub><doi>10.1109/ISRA.2012.6219277</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467322058
ispartof 2012 IEEE Symposium on Robotics and Applications (ISRA), 2012, p.664-667
issn
language eng
recordid cdi_ieee_primary_6219277
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Acceleration
Banach space
Chebyshev approximation
Convergence
Deformed Newton method
Equations
Newton method
Newton-Kantorovich theorem
Nonlinear operator equation
Robots
title The convergence analysis for a deformed Newton method with three orders in Banach space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20convergence%20analysis%20for%20a%20deformed%20Newton%20method%20with%20three%20orders%20in%20Banach%20space&rft.btitle=2012%20IEEE%20Symposium%20on%20Robotics%20and%20Applications%20(ISRA)&rft.au=Rongfei%20Lin&rft.date=2012-06&rft.spage=664&rft.epage=667&rft.pages=664-667&rft.isbn=9781467322058&rft.isbn_list=1467322059&rft_id=info:doi/10.1109/ISRA.2012.6219277&rft_dat=%3Cieee_6IE%3E6219277%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467322067&rft.eisbn_list=9781467322065&rft.eisbn_list=1467322075&rft.eisbn_list=9781467322072&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6219277&rfr_iscdi=true