The convergence analysis for a deformed Newton method with three orders in Banach space
We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 667 |
---|---|
container_issue | |
container_start_page | 664 |
container_title | |
container_volume | |
creator | Rongfei Lin Yueqing Zhao |
description | We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem. |
doi_str_mv | 10.1109/ISRA.2012.6219277 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6219277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6219277</ieee_id><sourcerecordid>6219277</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b63d8d87de5a7a6804846b23191d70f209f541158a1e7aaaed61bbe27b5ac0ae3</originalsourceid><addsrcrecordid>eNo1kM1Kw0AUhUdEUGseQNzcF0icmWR-sqzFn0JR0IDLcpO5MSNNUmaCpW9vwHo2H2fxncVh7FbwTAhe3q8_3peZ5EJmWopSGnPGrkWhTS4l1-acJaWx_13ZS5bE-M3nGM2NUlfss-oImnH4ofBFQ0OAA-6O0UdoxwAIjmb25OCVDtM4QE9TNzo4-KmDqQtEMAZHIYIf4GF2mw7iHhu6YRct7iIlJy5Y9fRYrV7SzdvzerXcpL7kU1rr3FlnjSOFBrXlhS10LXNRCmd4K3nZqkIIZVGQQURyWtQ1SVMrbDhSvmB3f7OeiLb74HsMx-3pivwXimNSpg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The convergence analysis for a deformed Newton method with three orders in Banach space</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rongfei Lin ; Yueqing Zhao</creator><creatorcontrib>Rongfei Lin ; Yueqing Zhao</creatorcontrib><description>We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem.</description><identifier>ISBN: 9781467322058</identifier><identifier>ISBN: 1467322059</identifier><identifier>EISBN: 1467322067</identifier><identifier>EISBN: 9781467322065</identifier><identifier>EISBN: 1467322075</identifier><identifier>EISBN: 9781467322072</identifier><identifier>DOI: 10.1109/ISRA.2012.6219277</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acceleration ; Banach space ; Chebyshev approximation ; Convergence ; Deformed Newton method ; Equations ; Newton method ; Newton-Kantorovich theorem ; Nonlinear operator equation ; Robots</subject><ispartof>2012 IEEE Symposium on Robotics and Applications (ISRA), 2012, p.664-667</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6219277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6219277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rongfei Lin</creatorcontrib><creatorcontrib>Yueqing Zhao</creatorcontrib><title>The convergence analysis for a deformed Newton method with three orders in Banach space</title><title>2012 IEEE Symposium on Robotics and Applications (ISRA)</title><addtitle>ISRA</addtitle><description>We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem.</description><subject>Acceleration</subject><subject>Banach space</subject><subject>Chebyshev approximation</subject><subject>Convergence</subject><subject>Deformed Newton method</subject><subject>Equations</subject><subject>Newton method</subject><subject>Newton-Kantorovich theorem</subject><subject>Nonlinear operator equation</subject><subject>Robots</subject><isbn>9781467322058</isbn><isbn>1467322059</isbn><isbn>1467322067</isbn><isbn>9781467322065</isbn><isbn>1467322075</isbn><isbn>9781467322072</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1Kw0AUhUdEUGseQNzcF0icmWR-sqzFn0JR0IDLcpO5MSNNUmaCpW9vwHo2H2fxncVh7FbwTAhe3q8_3peZ5EJmWopSGnPGrkWhTS4l1-acJaWx_13ZS5bE-M3nGM2NUlfss-oImnH4ofBFQ0OAA-6O0UdoxwAIjmb25OCVDtM4QE9TNzo4-KmDqQtEMAZHIYIf4GF2mw7iHhu6YRct7iIlJy5Y9fRYrV7SzdvzerXcpL7kU1rr3FlnjSOFBrXlhS10LXNRCmd4K3nZqkIIZVGQQURyWtQ1SVMrbDhSvmB3f7OeiLb74HsMx-3pivwXimNSpg</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Rongfei Lin</creator><creator>Yueqing Zhao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201206</creationdate><title>The convergence analysis for a deformed Newton method with three orders in Banach space</title><author>Rongfei Lin ; Yueqing Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b63d8d87de5a7a6804846b23191d70f209f541158a1e7aaaed61bbe27b5ac0ae3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acceleration</topic><topic>Banach space</topic><topic>Chebyshev approximation</topic><topic>Convergence</topic><topic>Deformed Newton method</topic><topic>Equations</topic><topic>Newton method</topic><topic>Newton-Kantorovich theorem</topic><topic>Nonlinear operator equation</topic><topic>Robots</topic><toplevel>online_resources</toplevel><creatorcontrib>Rongfei Lin</creatorcontrib><creatorcontrib>Yueqing Zhao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rongfei Lin</au><au>Yueqing Zhao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The convergence analysis for a deformed Newton method with three orders in Banach space</atitle><btitle>2012 IEEE Symposium on Robotics and Applications (ISRA)</btitle><stitle>ISRA</stitle><date>2012-06</date><risdate>2012</risdate><spage>664</spage><epage>667</epage><pages>664-667</pages><isbn>9781467322058</isbn><isbn>1467322059</isbn><eisbn>1467322067</eisbn><eisbn>9781467322065</eisbn><eisbn>1467322075</eisbn><eisbn>9781467322072</eisbn><abstract>We establish the Newton-Kantorovich convergence theorem for a deformed Newton methods in Banach space by using three orders majorizing function, which is used to solve the nonlinear operator equation. We also present the error estimate. Finally, some examples are provided to show the application of our theorem.</abstract><pub>IEEE</pub><doi>10.1109/ISRA.2012.6219277</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467322058 |
ispartof | 2012 IEEE Symposium on Robotics and Applications (ISRA), 2012, p.664-667 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6219277 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Acceleration Banach space Chebyshev approximation Convergence Deformed Newton method Equations Newton method Newton-Kantorovich theorem Nonlinear operator equation Robots |
title | The convergence analysis for a deformed Newton method with three orders in Banach space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20convergence%20analysis%20for%20a%20deformed%20Newton%20method%20with%20three%20orders%20in%20Banach%20space&rft.btitle=2012%20IEEE%20Symposium%20on%20Robotics%20and%20Applications%20(ISRA)&rft.au=Rongfei%20Lin&rft.date=2012-06&rft.spage=664&rft.epage=667&rft.pages=664-667&rft.isbn=9781467322058&rft.isbn_list=1467322059&rft_id=info:doi/10.1109/ISRA.2012.6219277&rft_dat=%3Cieee_6IE%3E6219277%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467322067&rft.eisbn_list=9781467322065&rft.eisbn_list=1467322075&rft.eisbn_list=9781467322072&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6219277&rfr_iscdi=true |