Scheduling Concurrent Applications on a Cluster of CPU-GPU Nodes
Heterogeneous architectures comprising a multicore CPU and many-core GPU(s) are increasingly being used within cluster and cloud environments. In this paper, we study the problem of optimizing the overall throughput of a set of applications deployed on a cluster of such heterogeneous nodes. We consi...
Gespeichert in:
Zusammenfassung: | Heterogeneous architectures comprising a multicore CPU and many-core GPU(s) are increasingly being used within cluster and cloud environments. In this paper, we study the problem of optimizing the overall throughput of a set of applications deployed on a cluster of such heterogeneous nodes. We consider two different scheduling formulations. In the first formulation, we consider jobs that can be executed on either the GPU or the CPU of a single node. In the second formulation, we consider jobs that can be executed on the CPU, GPU, or both, of any number of nodes in the system. We have developed scheduling schemes addressing both of the problems. In our evaluation, we first show that the schemes proposed for first formulation outperform a blind round-robin scheduler and approximate the performances of an ideal scheduler that involves an impractical exhaustive exploration of all possible schedules. Next, we show that the scheme proposed for the second formulation outperforms the best of existing schemes for heterogeneous clusters, TORQUE and MCT, by up to 42%. |
---|---|
DOI: | 10.1109/CCGrid.2012.78 |