CADA: Collaborative Auditing for Distributed Aggregation
The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanis...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Valerio, J. Felber, P. Rajman, M. Rivière, Etienne |
description | The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles. |
doi_str_mv | 10.1109/EDCC.2012.20 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6214756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6214756</ieee_id><sourcerecordid>6214756</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1cc65df9bc9a17fa2a35835020b7426f02f425bd75a1768c058f405c1716f7813</originalsourceid><addsrcrecordid>eNotjE9LxDAUxCMiqGtv3rz0C3R9L2nyEm8lXf_Aghc9L2malEjdStoV_PYWdA4zP5hhGLtF2CKCud-11m45IF_tjBWGNJAyslaEeM6ucQUBRmhzyYp5_oBVBAIUXDFtm7Z5KO00jq6bslvSdyibU5-WdBzKOOWyTfOSU3daQl82w5DDsI6m4w27iG6cQ_GfG_b-uHuzz9X-9enFNvsqIcmlQu-V7KPpvHFI0XEnpBYSOHRUcxWBx5rLrie51kp7kDrWID0SqkgaxYbd_f2mEMLhK6dPl38OimNNUolfVFdE4w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CADA: Collaborative Auditing for Distributed Aggregation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Valerio, J. ; Felber, P. ; Rajman, M. ; Rivière, Etienne</creator><creatorcontrib>Valerio, J. ; Felber, P. ; Rajman, M. ; Rivière, Etienne</creatorcontrib><description>The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles.</description><identifier>ISBN: 1467309389</identifier><identifier>ISBN: 9781467309387</identifier><identifier>EISBN: 9780769546711</identifier><identifier>EISBN: 0769546714</identifier><identifier>DOI: 10.1109/EDCC.2012.20</identifier><language>eng</language><publisher>IEEE</publisher><subject>accounting ; Aggregates ; aggregation ; distributed systems ; Middleware ; Peer to peer computing ; Radiation detectors ; Routing ; Servers ; Vectors</subject><ispartof>2012 Ninth European Dependable Computing Conference, 2012, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6214756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6214756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valerio, J.</creatorcontrib><creatorcontrib>Felber, P.</creatorcontrib><creatorcontrib>Rajman, M.</creatorcontrib><creatorcontrib>Rivière, Etienne</creatorcontrib><title>CADA: Collaborative Auditing for Distributed Aggregation</title><title>2012 Ninth European Dependable Computing Conference</title><addtitle>edcc</addtitle><description>The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles.</description><subject>accounting</subject><subject>Aggregates</subject><subject>aggregation</subject><subject>distributed systems</subject><subject>Middleware</subject><subject>Peer to peer computing</subject><subject>Radiation detectors</subject><subject>Routing</subject><subject>Servers</subject><subject>Vectors</subject><isbn>1467309389</isbn><isbn>9781467309387</isbn><isbn>9780769546711</isbn><isbn>0769546714</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE9LxDAUxCMiqGtv3rz0C3R9L2nyEm8lXf_Aghc9L2malEjdStoV_PYWdA4zP5hhGLtF2CKCud-11m45IF_tjBWGNJAyslaEeM6ucQUBRmhzyYp5_oBVBAIUXDFtm7Z5KO00jq6bslvSdyibU5-WdBzKOOWyTfOSU3daQl82w5DDsI6m4w27iG6cQ_GfG_b-uHuzz9X-9enFNvsqIcmlQu-V7KPpvHFI0XEnpBYSOHRUcxWBx5rLrie51kp7kDrWID0SqkgaxYbd_f2mEMLhK6dPl38OimNNUolfVFdE4w</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Valerio, J.</creator><creator>Felber, P.</creator><creator>Rajman, M.</creator><creator>Rivière, Etienne</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>CADA: Collaborative Auditing for Distributed Aggregation</title><author>Valerio, J. ; Felber, P. ; Rajman, M. ; Rivière, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1cc65df9bc9a17fa2a35835020b7426f02f425bd75a1768c058f405c1716f7813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>accounting</topic><topic>Aggregates</topic><topic>aggregation</topic><topic>distributed systems</topic><topic>Middleware</topic><topic>Peer to peer computing</topic><topic>Radiation detectors</topic><topic>Routing</topic><topic>Servers</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Valerio, J.</creatorcontrib><creatorcontrib>Felber, P.</creatorcontrib><creatorcontrib>Rajman, M.</creatorcontrib><creatorcontrib>Rivière, Etienne</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valerio, J.</au><au>Felber, P.</au><au>Rajman, M.</au><au>Rivière, Etienne</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CADA: Collaborative Auditing for Distributed Aggregation</atitle><btitle>2012 Ninth European Dependable Computing Conference</btitle><stitle>edcc</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><isbn>1467309389</isbn><isbn>9781467309387</isbn><eisbn>9780769546711</eisbn><eisbn>0769546714</eisbn><abstract>The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles.</abstract><pub>IEEE</pub><doi>10.1109/EDCC.2012.20</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467309389 |
ispartof | 2012 Ninth European Dependable Computing Conference, 2012, p.1-12 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6214756 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | accounting Aggregates aggregation distributed systems Middleware Peer to peer computing Radiation detectors Routing Servers Vectors |
title | CADA: Collaborative Auditing for Distributed Aggregation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CADA:%20Collaborative%20Auditing%20for%20Distributed%20Aggregation&rft.btitle=2012%20Ninth%20European%20Dependable%20Computing%20Conference&rft.au=Valerio,%20J.&rft.date=2012-05&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.isbn=1467309389&rft.isbn_list=9781467309387&rft_id=info:doi/10.1109/EDCC.2012.20&rft_dat=%3Cieee_6IE%3E6214756%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546711&rft.eisbn_list=0769546714&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6214756&rfr_iscdi=true |