CADA: Collaborative Auditing for Distributed Aggregation

The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Valerio, J., Felber, P., Rajman, M., Rivière, Etienne
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title
container_volume
creator Valerio, J.
Felber, P.
Rajman, M.
Rivière, Etienne
description The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles.
doi_str_mv 10.1109/EDCC.2012.20
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6214756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6214756</ieee_id><sourcerecordid>6214756</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1cc65df9bc9a17fa2a35835020b7426f02f425bd75a1768c058f405c1716f7813</originalsourceid><addsrcrecordid>eNotjE9LxDAUxCMiqGtv3rz0C3R9L2nyEm8lXf_Aghc9L2malEjdStoV_PYWdA4zP5hhGLtF2CKCud-11m45IF_tjBWGNJAyslaEeM6ucQUBRmhzyYp5_oBVBAIUXDFtm7Z5KO00jq6bslvSdyibU5-WdBzKOOWyTfOSU3daQl82w5DDsI6m4w27iG6cQ_GfG_b-uHuzz9X-9enFNvsqIcmlQu-V7KPpvHFI0XEnpBYSOHRUcxWBx5rLrie51kp7kDrWID0SqkgaxYbd_f2mEMLhK6dPl38OimNNUolfVFdE4w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>CADA: Collaborative Auditing for Distributed Aggregation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Valerio, J. ; Felber, P. ; Rajman, M. ; Rivière, Etienne</creator><creatorcontrib>Valerio, J. ; Felber, P. ; Rajman, M. ; Rivière, Etienne</creatorcontrib><description>The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles.</description><identifier>ISBN: 1467309389</identifier><identifier>ISBN: 9781467309387</identifier><identifier>EISBN: 9780769546711</identifier><identifier>EISBN: 0769546714</identifier><identifier>DOI: 10.1109/EDCC.2012.20</identifier><language>eng</language><publisher>IEEE</publisher><subject>accounting ; Aggregates ; aggregation ; distributed systems ; Middleware ; Peer to peer computing ; Radiation detectors ; Routing ; Servers ; Vectors</subject><ispartof>2012 Ninth European Dependable Computing Conference, 2012, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6214756$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6214756$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Valerio, J.</creatorcontrib><creatorcontrib>Felber, P.</creatorcontrib><creatorcontrib>Rajman, M.</creatorcontrib><creatorcontrib>Rivière, Etienne</creatorcontrib><title>CADA: Collaborative Auditing for Distributed Aggregation</title><title>2012 Ninth European Dependable Computing Conference</title><addtitle>edcc</addtitle><description>The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles.</description><subject>accounting</subject><subject>Aggregates</subject><subject>aggregation</subject><subject>distributed systems</subject><subject>Middleware</subject><subject>Peer to peer computing</subject><subject>Radiation detectors</subject><subject>Routing</subject><subject>Servers</subject><subject>Vectors</subject><isbn>1467309389</isbn><isbn>9781467309387</isbn><isbn>9780769546711</isbn><isbn>0769546714</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE9LxDAUxCMiqGtv3rz0C3R9L2nyEm8lXf_Aghc9L2malEjdStoV_PYWdA4zP5hhGLtF2CKCud-11m45IF_tjBWGNJAyslaEeM6ucQUBRmhzyYp5_oBVBAIUXDFtm7Z5KO00jq6bslvSdyibU5-WdBzKOOWyTfOSU3daQl82w5DDsI6m4w27iG6cQ_GfG_b-uHuzz9X-9enFNvsqIcmlQu-V7KPpvHFI0XEnpBYSOHRUcxWBx5rLrie51kp7kDrWID0SqkgaxYbd_f2mEMLhK6dPl38OimNNUolfVFdE4w</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Valerio, J.</creator><creator>Felber, P.</creator><creator>Rajman, M.</creator><creator>Rivière, Etienne</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201205</creationdate><title>CADA: Collaborative Auditing for Distributed Aggregation</title><author>Valerio, J. ; Felber, P. ; Rajman, M. ; Rivière, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1cc65df9bc9a17fa2a35835020b7426f02f425bd75a1768c058f405c1716f7813</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>accounting</topic><topic>Aggregates</topic><topic>aggregation</topic><topic>distributed systems</topic><topic>Middleware</topic><topic>Peer to peer computing</topic><topic>Radiation detectors</topic><topic>Routing</topic><topic>Servers</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Valerio, J.</creatorcontrib><creatorcontrib>Felber, P.</creatorcontrib><creatorcontrib>Rajman, M.</creatorcontrib><creatorcontrib>Rivière, Etienne</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valerio, J.</au><au>Felber, P.</au><au>Rajman, M.</au><au>Rivière, Etienne</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>CADA: Collaborative Auditing for Distributed Aggregation</atitle><btitle>2012 Ninth European Dependable Computing Conference</btitle><stitle>edcc</stitle><date>2012-05</date><risdate>2012</risdate><spage>1</spage><epage>12</epage><pages>1-12</pages><isbn>1467309389</isbn><isbn>9781467309387</isbn><eisbn>9780769546711</eisbn><eisbn>0769546714</eisbn><abstract>The aggregation of distributions, composed of the number of occurrences of each element in a set, is an operation that lies at the heart of several large-scale distributed applications. Examples include popularity tracking, recommendation systems, trust management, or popularity measurement mechanisms. These applications typically span multiple administrative domains that do not trust each other and are sensitive to biases in the distribution aggregation: the results can only be trusted if inserted values were not altered nor forged, and if nodes collecting the insertions do not arbitrarily modify the aggregation results. In order to increase the level of trust that can be granted to applications, there must be a disincentive for servers to bias the aggregation results. In this paper we present the CADA auditing mechanisms that let aggregation servers collaboratively and periodically audit one another based on probabilistic tests over server-local state. CADA differs from the existing work on accountability in that it leverages the nature of the operation being performed by the node rather than a general and application-oblivious model of the computation. The effectiveness of CADA is conveyed by an experimental evaluation that studies its ability to detect malevolent behaviors using lightweight auditing oracles.</abstract><pub>IEEE</pub><doi>10.1109/EDCC.2012.20</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467309389
ispartof 2012 Ninth European Dependable Computing Conference, 2012, p.1-12
issn
language eng
recordid cdi_ieee_primary_6214756
source IEEE Electronic Library (IEL) Conference Proceedings
subjects accounting
Aggregates
aggregation
distributed systems
Middleware
Peer to peer computing
Radiation detectors
Routing
Servers
Vectors
title CADA: Collaborative Auditing for Distributed Aggregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=CADA:%20Collaborative%20Auditing%20for%20Distributed%20Aggregation&rft.btitle=2012%20Ninth%20European%20Dependable%20Computing%20Conference&rft.au=Valerio,%20J.&rft.date=2012-05&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.isbn=1467309389&rft.isbn_list=9781467309387&rft_id=info:doi/10.1109/EDCC.2012.20&rft_dat=%3Cieee_6IE%3E6214756%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546711&rft.eisbn_list=0769546714&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6214756&rfr_iscdi=true