Optimal detectors for multi-target environments
The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we stu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 0961 |
---|---|
container_issue | |
container_start_page | 0956 |
container_title | |
container_volume | |
creator | Rossler, C. W. Minardi, M. J. Ertin, E. Moses, R. L. |
description | The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set. |
doi_str_mv | 10.1109/RADAR.2012.6212275 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6212275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6212275</ieee_id><sourcerecordid>6212275</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65ccb4a8d6f043e9991ade185713c436f1c0a83ed18e58d7c8726ad30f5c5ab3</originalsourceid><addsrcrecordid>eNo1j8lqwzAURdUJ6qT5gXbjH7CjJ_lpWJo0HSAQCNkHRXouLh6CrBb69w00Xd3FuRzuZewReAnA7XJXP9e7UnAQpRIghMYrtrDaQKW05ApNdc0yITUWKMHcsNk_UOaWZWeDLlChvWezafrkHOW5m7Hl9pTa3nV5oEQ-jXHKmzHm_VeX2iK5-EEpp-G7jePQ05CmB3bXuG6ixSXnbP-y3q_eis329X1Vb4oWNKZCoffHypmgGl5JstaCCwQGNUhfSdWA585ICmAITdDeaKFckLxBj-4o5-zpT9sS0eEUzxPjz-HyW_4C9SNIDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal detectors for multi-target environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rossler, C. W. ; Minardi, M. J. ; Ertin, E. ; Moses, R. L.</creator><creatorcontrib>Rossler, C. W. ; Minardi, M. J. ; Ertin, E. ; Moses, R. L.</creatorcontrib><description>The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set.</description><identifier>ISSN: 1097-5659</identifier><identifier>ISBN: 1467306568</identifier><identifier>ISBN: 9781467306560</identifier><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 9781467306584</identifier><identifier>EISBN: 9781467306577</identifier><identifier>EISBN: 1467306584</identifier><identifier>EISBN: 1467306576</identifier><identifier>DOI: 10.1109/RADAR.2012.6212275</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Clutter ; Detectors ; Noise ; Phase shift keying ; Radar ; Vectors</subject><ispartof>2012 IEEE Radar Conference, 2012, p.0956-0961</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6212275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6212275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rossler, C. W.</creatorcontrib><creatorcontrib>Minardi, M. J.</creatorcontrib><creatorcontrib>Ertin, E.</creatorcontrib><creatorcontrib>Moses, R. L.</creatorcontrib><title>Optimal detectors for multi-target environments</title><title>2012 IEEE Radar Conference</title><addtitle>RADAR</addtitle><description>The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set.</description><subject>Approximation methods</subject><subject>Clutter</subject><subject>Detectors</subject><subject>Noise</subject><subject>Phase shift keying</subject><subject>Radar</subject><subject>Vectors</subject><issn>1097-5659</issn><issn>2375-5318</issn><isbn>1467306568</isbn><isbn>9781467306560</isbn><isbn>9781467306584</isbn><isbn>9781467306577</isbn><isbn>1467306584</isbn><isbn>1467306576</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8lqwzAURdUJ6qT5gXbjH7CjJ_lpWJo0HSAQCNkHRXouLh6CrBb69w00Xd3FuRzuZewReAnA7XJXP9e7UnAQpRIghMYrtrDaQKW05ApNdc0yITUWKMHcsNk_UOaWZWeDLlChvWezafrkHOW5m7Hl9pTa3nV5oEQ-jXHKmzHm_VeX2iK5-EEpp-G7jePQ05CmB3bXuG6ixSXnbP-y3q_eis329X1Vb4oWNKZCoffHypmgGl5JstaCCwQGNUhfSdWA585ICmAITdDeaKFckLxBj-4o5-zpT9sS0eEUzxPjz-HyW_4C9SNIDg</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Rossler, C. W.</creator><creator>Minardi, M. J.</creator><creator>Ertin, E.</creator><creator>Moses, R. L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Optimal detectors for multi-target environments</title><author>Rossler, C. W. ; Minardi, M. J. ; Ertin, E. ; Moses, R. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65ccb4a8d6f043e9991ade185713c436f1c0a83ed18e58d7c8726ad30f5c5ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Clutter</topic><topic>Detectors</topic><topic>Noise</topic><topic>Phase shift keying</topic><topic>Radar</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Rossler, C. W.</creatorcontrib><creatorcontrib>Minardi, M. J.</creatorcontrib><creatorcontrib>Ertin, E.</creatorcontrib><creatorcontrib>Moses, R. L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rossler, C. W.</au><au>Minardi, M. J.</au><au>Ertin, E.</au><au>Moses, R. L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal detectors for multi-target environments</atitle><btitle>2012 IEEE Radar Conference</btitle><stitle>RADAR</stitle><date>2012-05</date><risdate>2012</risdate><spage>0956</spage><epage>0961</epage><pages>0956-0961</pages><issn>1097-5659</issn><eissn>2375-5318</eissn><isbn>1467306568</isbn><isbn>9781467306560</isbn><eisbn>9781467306584</eisbn><eisbn>9781467306577</eisbn><eisbn>1467306584</eisbn><eisbn>1467306576</eisbn><abstract>The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set.</abstract><pub>IEEE</pub><doi>10.1109/RADAR.2012.6212275</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1097-5659 |
ispartof | 2012 IEEE Radar Conference, 2012, p.0956-0961 |
issn | 1097-5659 2375-5318 |
language | eng |
recordid | cdi_ieee_primary_6212275 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Clutter Detectors Noise Phase shift keying Radar Vectors |
title | Optimal detectors for multi-target environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20detectors%20for%20multi-target%20environments&rft.btitle=2012%20IEEE%20Radar%20Conference&rft.au=Rossler,%20C.%20W.&rft.date=2012-05&rft.spage=0956&rft.epage=0961&rft.pages=0956-0961&rft.issn=1097-5659&rft.eissn=2375-5318&rft.isbn=1467306568&rft.isbn_list=9781467306560&rft_id=info:doi/10.1109/RADAR.2012.6212275&rft_dat=%3Cieee_6IE%3E6212275%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467306584&rft.eisbn_list=9781467306577&rft.eisbn_list=1467306584&rft.eisbn_list=1467306576&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6212275&rfr_iscdi=true |