Optimal detectors for multi-target environments

The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rossler, C. W., Minardi, M. J., Ertin, E., Moses, R. L.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 0961
container_issue
container_start_page 0956
container_title
container_volume
creator Rossler, C. W.
Minardi, M. J.
Ertin, E.
Moses, R. L.
description The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set.
doi_str_mv 10.1109/RADAR.2012.6212275
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6212275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6212275</ieee_id><sourcerecordid>6212275</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65ccb4a8d6f043e9991ade185713c436f1c0a83ed18e58d7c8726ad30f5c5ab3</originalsourceid><addsrcrecordid>eNo1j8lqwzAURdUJ6qT5gXbjH7CjJ_lpWJo0HSAQCNkHRXouLh6CrBb69w00Xd3FuRzuZewReAnA7XJXP9e7UnAQpRIghMYrtrDaQKW05ApNdc0yITUWKMHcsNk_UOaWZWeDLlChvWezafrkHOW5m7Hl9pTa3nV5oEQ-jXHKmzHm_VeX2iK5-EEpp-G7jePQ05CmB3bXuG6ixSXnbP-y3q_eis329X1Vb4oWNKZCoffHypmgGl5JstaCCwQGNUhfSdWA585ICmAITdDeaKFckLxBj-4o5-zpT9sS0eEUzxPjz-HyW_4C9SNIDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Optimal detectors for multi-target environments</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rossler, C. W. ; Minardi, M. J. ; Ertin, E. ; Moses, R. L.</creator><creatorcontrib>Rossler, C. W. ; Minardi, M. J. ; Ertin, E. ; Moses, R. L.</creatorcontrib><description>The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set.</description><identifier>ISSN: 1097-5659</identifier><identifier>ISBN: 1467306568</identifier><identifier>ISBN: 9781467306560</identifier><identifier>EISSN: 2375-5318</identifier><identifier>EISBN: 9781467306584</identifier><identifier>EISBN: 9781467306577</identifier><identifier>EISBN: 1467306584</identifier><identifier>EISBN: 1467306576</identifier><identifier>DOI: 10.1109/RADAR.2012.6212275</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Clutter ; Detectors ; Noise ; Phase shift keying ; Radar ; Vectors</subject><ispartof>2012 IEEE Radar Conference, 2012, p.0956-0961</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6212275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6212275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rossler, C. W.</creatorcontrib><creatorcontrib>Minardi, M. J.</creatorcontrib><creatorcontrib>Ertin, E.</creatorcontrib><creatorcontrib>Moses, R. L.</creatorcontrib><title>Optimal detectors for multi-target environments</title><title>2012 IEEE Radar Conference</title><addtitle>RADAR</addtitle><description>The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set.</description><subject>Approximation methods</subject><subject>Clutter</subject><subject>Detectors</subject><subject>Noise</subject><subject>Phase shift keying</subject><subject>Radar</subject><subject>Vectors</subject><issn>1097-5659</issn><issn>2375-5318</issn><isbn>1467306568</isbn><isbn>9781467306560</isbn><isbn>9781467306584</isbn><isbn>9781467306577</isbn><isbn>1467306584</isbn><isbn>1467306576</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8lqwzAURdUJ6qT5gXbjH7CjJ_lpWJo0HSAQCNkHRXouLh6CrBb69w00Xd3FuRzuZewReAnA7XJXP9e7UnAQpRIghMYrtrDaQKW05ApNdc0yITUWKMHcsNk_UOaWZWeDLlChvWezafrkHOW5m7Hl9pTa3nV5oEQ-jXHKmzHm_VeX2iK5-EEpp-G7jePQ05CmB3bXuG6ixSXnbP-y3q_eis329X1Vb4oWNKZCoffHypmgGl5JstaCCwQGNUhfSdWA585ICmAITdDeaKFckLxBj-4o5-zpT9sS0eEUzxPjz-HyW_4C9SNIDg</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Rossler, C. W.</creator><creator>Minardi, M. J.</creator><creator>Ertin, E.</creator><creator>Moses, R. L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201205</creationdate><title>Optimal detectors for multi-target environments</title><author>Rossler, C. W. ; Minardi, M. J. ; Ertin, E. ; Moses, R. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65ccb4a8d6f043e9991ade185713c436f1c0a83ed18e58d7c8726ad30f5c5ab3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation methods</topic><topic>Clutter</topic><topic>Detectors</topic><topic>Noise</topic><topic>Phase shift keying</topic><topic>Radar</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Rossler, C. W.</creatorcontrib><creatorcontrib>Minardi, M. J.</creatorcontrib><creatorcontrib>Ertin, E.</creatorcontrib><creatorcontrib>Moses, R. L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rossler, C. W.</au><au>Minardi, M. J.</au><au>Ertin, E.</au><au>Moses, R. L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal detectors for multi-target environments</atitle><btitle>2012 IEEE Radar Conference</btitle><stitle>RADAR</stitle><date>2012-05</date><risdate>2012</risdate><spage>0956</spage><epage>0961</epage><pages>0956-0961</pages><issn>1097-5659</issn><eissn>2375-5318</eissn><isbn>1467306568</isbn><isbn>9781467306560</isbn><eisbn>9781467306584</eisbn><eisbn>9781467306577</eisbn><eisbn>1467306584</eisbn><eisbn>1467306576</eisbn><abstract>The matched filter is known to be the optimal detector for a single target with known impulse response in white noise. However, many radar systems operate in multi-target environments, for which the matched filter is suboptimal due to modeling mismatch of the background signal. In this paper, we study the hypothesis testing problem of detecting a target at a given range cell while modeling all targets at other range cells as a correlated background process. We consider both deterministic-unknown and random amplitude target models, and derive the corresponding optimal detectors. For the deterministic-unknown signal model, we show that special cases of the optimal detector reduce to ridge regression (a classical solution for inverse problems), sidelobe suppression (a heuristic solution for target detection in multi-target environments), or adaptive pulse compression. The detector resulting from the random amplitude signal model reduces to that of the deterministic signal model for targets modeled as occupying a single range cell. Range-Doppler extension are given. We illustrate the performance of the detector using simulated data and the civilian vehicle data dome set.</abstract><pub>IEEE</pub><doi>10.1109/RADAR.2012.6212275</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1097-5659
ispartof 2012 IEEE Radar Conference, 2012, p.0956-0961
issn 1097-5659
2375-5318
language eng
recordid cdi_ieee_primary_6212275
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Clutter
Detectors
Noise
Phase shift keying
Radar
Vectors
title Optimal detectors for multi-target environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20detectors%20for%20multi-target%20environments&rft.btitle=2012%20IEEE%20Radar%20Conference&rft.au=Rossler,%20C.%20W.&rft.date=2012-05&rft.spage=0956&rft.epage=0961&rft.pages=0956-0961&rft.issn=1097-5659&rft.eissn=2375-5318&rft.isbn=1467306568&rft.isbn_list=9781467306560&rft_id=info:doi/10.1109/RADAR.2012.6212275&rft_dat=%3Cieee_6IE%3E6212275%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467306584&rft.eisbn_list=9781467306577&rft.eisbn_list=1467306584&rft.eisbn_list=1467306576&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6212275&rfr_iscdi=true