Evaluating compressive sampling strategies for performance monitoring of data centers
Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analy...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | |
container_start_page | 655 |
container_title | |
container_volume | |
creator | Tingshan Huang Kandasamy, N. Sethu, H. |
description | Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals. |
doi_str_mv | 10.1109/NOMS.2012.6211979 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6211979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6211979</ieee_id><sourcerecordid>6211979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4f6864e5e75279a7e2f1adb9fbedfd18cd3805fd4fc638b92edd8a56a8fedac23</originalsourceid><addsrcrecordid>eNo1kMlOQjEUhuuUCMgDGDd9gYsdb9ulIU4JykJZk8PtKanhDmkriW8vRFx9yT8tfkJuOZtxztz9-_LtYyYYF7NacO6MOyNTZyxXtZFM1Fafk5GQRlXOMHdBxv-GsZdkxLUSFT-0r8k45y_GlGGSjcjqcQ-7byix29Kmb4eEOcc90gztsDuKuSQouI2YaegTHTAd0ELXIG37LpY-HVN9oB4K0Aa7ginfkKsAu4zTEydk9fT4OX-pFsvn1_nDoorc6FKpUNtaoUajhXFgUAQOfuPCBn3w3DZeWqaDV6Gppd04gd5b0DXYgB4aISfk7m83IuJ6SLGF9LM-3SN_AWftWCE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluating compressive sampling strategies for performance monitoring of data centers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tingshan Huang ; Kandasamy, N. ; Sethu, H.</creator><creatorcontrib>Tingshan Huang ; Kandasamy, N. ; Sethu, H.</creatorcontrib><description>Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals.</description><identifier>ISSN: 1542-1201</identifier><identifier>ISBN: 1467302678</identifier><identifier>ISBN: 9781467302678</identifier><identifier>EISSN: 2374-9709</identifier><identifier>EISBN: 9781467302685</identifier><identifier>EISBN: 9781467302692</identifier><identifier>EISBN: 1467302686</identifier><identifier>EISBN: 1467302694</identifier><identifier>DOI: 10.1109/NOMS.2012.6211979</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coherence ; compressive sampling ; Monitoring ; online monitoring ; Performance management ; Sensors ; Servers ; Time factors ; Vectors</subject><ispartof>2012 IEEE Network Operations and Management Symposium, 2012, p.655-658</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6211979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6211979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tingshan Huang</creatorcontrib><creatorcontrib>Kandasamy, N.</creatorcontrib><creatorcontrib>Sethu, H.</creatorcontrib><title>Evaluating compressive sampling strategies for performance monitoring of data centers</title><title>2012 IEEE Network Operations and Management Symposium</title><addtitle>NOMS</addtitle><description>Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals.</description><subject>Coherence</subject><subject>compressive sampling</subject><subject>Monitoring</subject><subject>online monitoring</subject><subject>Performance management</subject><subject>Sensors</subject><subject>Servers</subject><subject>Time factors</subject><subject>Vectors</subject><issn>1542-1201</issn><issn>2374-9709</issn><isbn>1467302678</isbn><isbn>9781467302678</isbn><isbn>9781467302685</isbn><isbn>9781467302692</isbn><isbn>1467302686</isbn><isbn>1467302694</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlOQjEUhuuUCMgDGDd9gYsdb9ulIU4JykJZk8PtKanhDmkriW8vRFx9yT8tfkJuOZtxztz9-_LtYyYYF7NacO6MOyNTZyxXtZFM1Fafk5GQRlXOMHdBxv-GsZdkxLUSFT-0r8k45y_GlGGSjcjqcQ-7byix29Kmb4eEOcc90gztsDuKuSQouI2YaegTHTAd0ELXIG37LpY-HVN9oB4K0Aa7ginfkKsAu4zTEydk9fT4OX-pFsvn1_nDoorc6FKpUNtaoUajhXFgUAQOfuPCBn3w3DZeWqaDV6Gppd04gd5b0DXYgB4aISfk7m83IuJ6SLGF9LM-3SN_AWftWCE</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Tingshan Huang</creator><creator>Kandasamy, N.</creator><creator>Sethu, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>Evaluating compressive sampling strategies for performance monitoring of data centers</title><author>Tingshan Huang ; Kandasamy, N. ; Sethu, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4f6864e5e75279a7e2f1adb9fbedfd18cd3805fd4fc638b92edd8a56a8fedac23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Coherence</topic><topic>compressive sampling</topic><topic>Monitoring</topic><topic>online monitoring</topic><topic>Performance management</topic><topic>Sensors</topic><topic>Servers</topic><topic>Time factors</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tingshan Huang</creatorcontrib><creatorcontrib>Kandasamy, N.</creatorcontrib><creatorcontrib>Sethu, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tingshan Huang</au><au>Kandasamy, N.</au><au>Sethu, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluating compressive sampling strategies for performance monitoring of data centers</atitle><btitle>2012 IEEE Network Operations and Management Symposium</btitle><stitle>NOMS</stitle><date>2012-04</date><risdate>2012</risdate><spage>655</spage><epage>658</epage><pages>655-658</pages><issn>1542-1201</issn><eissn>2374-9709</eissn><isbn>1467302678</isbn><isbn>9781467302678</isbn><eisbn>9781467302685</eisbn><eisbn>9781467302692</eisbn><eisbn>1467302686</eisbn><eisbn>1467302694</eisbn><abstract>Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals.</abstract><pub>IEEE</pub><doi>10.1109/NOMS.2012.6211979</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1542-1201 |
ispartof | 2012 IEEE Network Operations and Management Symposium, 2012, p.655-658 |
issn | 1542-1201 2374-9709 |
language | eng |
recordid | cdi_ieee_primary_6211979 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Coherence compressive sampling Monitoring online monitoring Performance management Sensors Servers Time factors Vectors |
title | Evaluating compressive sampling strategies for performance monitoring of data centers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluating%20compressive%20sampling%20strategies%20for%20performance%20monitoring%20of%20data%20centers&rft.btitle=2012%20IEEE%20Network%20Operations%20and%20Management%20Symposium&rft.au=Tingshan%20Huang&rft.date=2012-04&rft.spage=655&rft.epage=658&rft.pages=655-658&rft.issn=1542-1201&rft.eissn=2374-9709&rft.isbn=1467302678&rft.isbn_list=9781467302678&rft_id=info:doi/10.1109/NOMS.2012.6211979&rft_dat=%3Cieee_6IE%3E6211979%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467302685&rft.eisbn_list=9781467302692&rft.eisbn_list=1467302686&rft.eisbn_list=1467302694&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6211979&rfr_iscdi=true |