Evaluating compressive sampling strategies for performance monitoring of data centers

Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tingshan Huang, Kandasamy, N., Sethu, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 658
container_issue
container_start_page 655
container_title
container_volume
creator Tingshan Huang
Kandasamy, N.
Sethu, H.
description Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals.
doi_str_mv 10.1109/NOMS.2012.6211979
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6211979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6211979</ieee_id><sourcerecordid>6211979</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4f6864e5e75279a7e2f1adb9fbedfd18cd3805fd4fc638b92edd8a56a8fedac23</originalsourceid><addsrcrecordid>eNo1kMlOQjEUhuuUCMgDGDd9gYsdb9ulIU4JykJZk8PtKanhDmkriW8vRFx9yT8tfkJuOZtxztz9-_LtYyYYF7NacO6MOyNTZyxXtZFM1Fafk5GQRlXOMHdBxv-GsZdkxLUSFT-0r8k45y_GlGGSjcjqcQ-7byix29Kmb4eEOcc90gztsDuKuSQouI2YaegTHTAd0ELXIG37LpY-HVN9oB4K0Aa7ginfkKsAu4zTEydk9fT4OX-pFsvn1_nDoorc6FKpUNtaoUajhXFgUAQOfuPCBn3w3DZeWqaDV6Gppd04gd5b0DXYgB4aISfk7m83IuJ6SLGF9LM-3SN_AWftWCE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evaluating compressive sampling strategies for performance monitoring of data centers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tingshan Huang ; Kandasamy, N. ; Sethu, H.</creator><creatorcontrib>Tingshan Huang ; Kandasamy, N. ; Sethu, H.</creatorcontrib><description>Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals.</description><identifier>ISSN: 1542-1201</identifier><identifier>ISBN: 1467302678</identifier><identifier>ISBN: 9781467302678</identifier><identifier>EISSN: 2374-9709</identifier><identifier>EISBN: 9781467302685</identifier><identifier>EISBN: 9781467302692</identifier><identifier>EISBN: 1467302686</identifier><identifier>EISBN: 1467302694</identifier><identifier>DOI: 10.1109/NOMS.2012.6211979</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coherence ; compressive sampling ; Monitoring ; online monitoring ; Performance management ; Sensors ; Servers ; Time factors ; Vectors</subject><ispartof>2012 IEEE Network Operations and Management Symposium, 2012, p.655-658</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6211979$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6211979$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tingshan Huang</creatorcontrib><creatorcontrib>Kandasamy, N.</creatorcontrib><creatorcontrib>Sethu, H.</creatorcontrib><title>Evaluating compressive sampling strategies for performance monitoring of data centers</title><title>2012 IEEE Network Operations and Management Symposium</title><addtitle>NOMS</addtitle><description>Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals.</description><subject>Coherence</subject><subject>compressive sampling</subject><subject>Monitoring</subject><subject>online monitoring</subject><subject>Performance management</subject><subject>Sensors</subject><subject>Servers</subject><subject>Time factors</subject><subject>Vectors</subject><issn>1542-1201</issn><issn>2374-9709</issn><isbn>1467302678</isbn><isbn>9781467302678</isbn><isbn>9781467302685</isbn><isbn>9781467302692</isbn><isbn>1467302686</isbn><isbn>1467302694</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMlOQjEUhuuUCMgDGDd9gYsdb9ulIU4JykJZk8PtKanhDmkriW8vRFx9yT8tfkJuOZtxztz9-_LtYyYYF7NacO6MOyNTZyxXtZFM1Fafk5GQRlXOMHdBxv-GsZdkxLUSFT-0r8k45y_GlGGSjcjqcQ-7byix29Kmb4eEOcc90gztsDuKuSQouI2YaegTHTAd0ELXIG37LpY-HVN9oB4K0Aa7ginfkKsAu4zTEydk9fT4OX-pFsvn1_nDoorc6FKpUNtaoUajhXFgUAQOfuPCBn3w3DZeWqaDV6Gppd04gd5b0DXYgB4aISfk7m83IuJ6SLGF9LM-3SN_AWftWCE</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Tingshan Huang</creator><creator>Kandasamy, N.</creator><creator>Sethu, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201204</creationdate><title>Evaluating compressive sampling strategies for performance monitoring of data centers</title><author>Tingshan Huang ; Kandasamy, N. ; Sethu, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4f6864e5e75279a7e2f1adb9fbedfd18cd3805fd4fc638b92edd8a56a8fedac23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Coherence</topic><topic>compressive sampling</topic><topic>Monitoring</topic><topic>online monitoring</topic><topic>Performance management</topic><topic>Sensors</topic><topic>Servers</topic><topic>Time factors</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Tingshan Huang</creatorcontrib><creatorcontrib>Kandasamy, N.</creatorcontrib><creatorcontrib>Sethu, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tingshan Huang</au><au>Kandasamy, N.</au><au>Sethu, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evaluating compressive sampling strategies for performance monitoring of data centers</atitle><btitle>2012 IEEE Network Operations and Management Symposium</btitle><stitle>NOMS</stitle><date>2012-04</date><risdate>2012</risdate><spage>655</spage><epage>658</epage><pages>655-658</pages><issn>1542-1201</issn><eissn>2374-9709</eissn><isbn>1467302678</isbn><isbn>9781467302678</isbn><eisbn>9781467302685</eisbn><eisbn>9781467302692</eisbn><eisbn>1467302686</eisbn><eisbn>1467302694</eisbn><abstract>Performance monitoring of data centers provides vital information for dynamic resource provisioning, fault diagnosis, and capacity planning decisions. However, the very act of monitoring a system interferes with its performance, and if the information is transmitted to a monitoring station for analysis and logging, this consumes network bandwidth and disk space. This paper proposes a low-cost monitoring solution using compressive sampling - a technique that allows certain classes of signals to be recovered from the original measurements using far fewer samples than traditional approaches - and evaluates its ability to measure typical signals generated in a data-center setting using a testbed comprising the Trade6 enterprise application. The results open up the possibility of using low-cost compressive sampling techniques to detect performance bottlenecks and anomalies that manifest themselves as abrupt changes exceeding operator-defined threshold values in the underlying signals.</abstract><pub>IEEE</pub><doi>10.1109/NOMS.2012.6211979</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1542-1201
ispartof 2012 IEEE Network Operations and Management Symposium, 2012, p.655-658
issn 1542-1201
2374-9709
language eng
recordid cdi_ieee_primary_6211979
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Coherence
compressive sampling
Monitoring
online monitoring
Performance management
Sensors
Servers
Time factors
Vectors
title Evaluating compressive sampling strategies for performance monitoring of data centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evaluating%20compressive%20sampling%20strategies%20for%20performance%20monitoring%20of%20data%20centers&rft.btitle=2012%20IEEE%20Network%20Operations%20and%20Management%20Symposium&rft.au=Tingshan%20Huang&rft.date=2012-04&rft.spage=655&rft.epage=658&rft.pages=655-658&rft.issn=1542-1201&rft.eissn=2374-9709&rft.isbn=1467302678&rft.isbn_list=9781467302678&rft_id=info:doi/10.1109/NOMS.2012.6211979&rft_dat=%3Cieee_6IE%3E6211979%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467302685&rft.eisbn_list=9781467302692&rft.eisbn_list=1467302686&rft.eisbn_list=1467302694&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6211979&rfr_iscdi=true