Short-term traffic flow forecasting by mutual information and artificial neural networks

Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hosseini, S. H., Moshiri, B., Rahimi-Kian, A., Araabi, B. N.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1141
container_issue
container_start_page 1136
container_title
container_volume
creator Hosseini, S. H.
Moshiri, B.
Rahimi-Kian, A.
Araabi, B. N.
description Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used.
doi_str_mv 10.1109/ICIT.2012.6210093
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6210093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6210093</ieee_id><sourcerecordid>6210093</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1d34ff5f314f33b6a85826504666262a8453a5052b02c04d808221e13591835f3</originalsourceid><addsrcrecordid>eNpVUEtLxDAYjIigrP0B4iV_oPXLl0fToxQfCwse7MHbkraJRvuQNGXZf2_QvTiXYWaYOQwhNwwKxqC629bbpkBgWChkABU_I1lVaiZUyYELxPN_GvQlyZblExLKpCt5Rd5eP-YQ82jDSGMwzvmOumE-UDcH25kl-umdtkc6rnE1A_VT8kcT_TxRM_XUhOhTxadosmv4pXiYw9dyTS6cGRabnXhDmseHpn7Ody9P2_p-l_sKYs56LpyTjjPhOG-V0VKjkiCUUqjQaCG5kSCxBexA9Bo0IrOMy4ppnnobcvs36621--_gRxOO-9Md_AfvjlKR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Short-term traffic flow forecasting by mutual information and artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hosseini, S. H. ; Moshiri, B. ; Rahimi-Kian, A. ; Araabi, B. N.</creator><creatorcontrib>Hosseini, S. H. ; Moshiri, B. ; Rahimi-Kian, A. ; Araabi, B. N.</creatorcontrib><description>Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used.</description><identifier>ISBN: 9781467303408</identifier><identifier>ISBN: 1467303402</identifier><identifier>EISBN: 9781467303422</identifier><identifier>EISBN: 9781467303415</identifier><identifier>EISBN: 1467303429</identifier><identifier>EISBN: 1467303410</identifier><identifier>DOI: 10.1109/ICIT.2012.6210093</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer languages ; Prediction algorithms</subject><ispartof>2012 IEEE International Conference on Industrial Technology, 2012, p.1136-1141</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6210093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6210093$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hosseini, S. H.</creatorcontrib><creatorcontrib>Moshiri, B.</creatorcontrib><creatorcontrib>Rahimi-Kian, A.</creatorcontrib><creatorcontrib>Araabi, B. N.</creatorcontrib><title>Short-term traffic flow forecasting by mutual information and artificial neural networks</title><title>2012 IEEE International Conference on Industrial Technology</title><addtitle>ICIT</addtitle><description>Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used.</description><subject>Computer languages</subject><subject>Prediction algorithms</subject><isbn>9781467303408</isbn><isbn>1467303402</isbn><isbn>9781467303422</isbn><isbn>9781467303415</isbn><isbn>1467303429</isbn><isbn>1467303410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtLxDAYjIigrP0B4iV_oPXLl0fToxQfCwse7MHbkraJRvuQNGXZf2_QvTiXYWaYOQwhNwwKxqC629bbpkBgWChkABU_I1lVaiZUyYELxPN_GvQlyZblExLKpCt5Rd5eP-YQ82jDSGMwzvmOumE-UDcH25kl-umdtkc6rnE1A_VT8kcT_TxRM_XUhOhTxadosmv4pXiYw9dyTS6cGRabnXhDmseHpn7Ody9P2_p-l_sKYs56LpyTjjPhOG-V0VKjkiCUUqjQaCG5kSCxBexA9Bo0IrOMy4ppnnobcvs36621--_gRxOO-9Md_AfvjlKR</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hosseini, S. H.</creator><creator>Moshiri, B.</creator><creator>Rahimi-Kian, A.</creator><creator>Araabi, B. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Short-term traffic flow forecasting by mutual information and artificial neural networks</title><author>Hosseini, S. H. ; Moshiri, B. ; Rahimi-Kian, A. ; Araabi, B. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1d34ff5f314f33b6a85826504666262a8453a5052b02c04d808221e13591835f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer languages</topic><topic>Prediction algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, S. H.</creatorcontrib><creatorcontrib>Moshiri, B.</creatorcontrib><creatorcontrib>Rahimi-Kian, A.</creatorcontrib><creatorcontrib>Araabi, B. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hosseini, S. H.</au><au>Moshiri, B.</au><au>Rahimi-Kian, A.</au><au>Araabi, B. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Short-term traffic flow forecasting by mutual information and artificial neural networks</atitle><btitle>2012 IEEE International Conference on Industrial Technology</btitle><stitle>ICIT</stitle><date>2012-03</date><risdate>2012</risdate><spage>1136</spage><epage>1141</epage><pages>1136-1141</pages><isbn>9781467303408</isbn><isbn>1467303402</isbn><eisbn>9781467303422</eisbn><eisbn>9781467303415</eisbn><eisbn>1467303429</eisbn><eisbn>1467303410</eisbn><abstract>Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used.</abstract><pub>IEEE</pub><doi>10.1109/ICIT.2012.6210093</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467303408
ispartof 2012 IEEE International Conference on Industrial Technology, 2012, p.1136-1141
issn
language eng
recordid cdi_ieee_primary_6210093
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computer languages
Prediction algorithms
title Short-term traffic flow forecasting by mutual information and artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Short-term%20traffic%20flow%20forecasting%20by%20mutual%20information%20and%20artificial%20neural%20networks&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Industrial%20Technology&rft.au=Hosseini,%20S.%20H.&rft.date=2012-03&rft.spage=1136&rft.epage=1141&rft.pages=1136-1141&rft.isbn=9781467303408&rft.isbn_list=1467303402&rft_id=info:doi/10.1109/ICIT.2012.6210093&rft_dat=%3Cieee_6IE%3E6210093%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303422&rft.eisbn_list=9781467303415&rft.eisbn_list=1467303429&rft.eisbn_list=1467303410&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6210093&rfr_iscdi=true