Short-term traffic flow forecasting by mutual information and artificial neural networks
Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1141 |
---|---|
container_issue | |
container_start_page | 1136 |
container_title | |
container_volume | |
creator | Hosseini, S. H. Moshiri, B. Rahimi-Kian, A. Araabi, B. N. |
description | Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used. |
doi_str_mv | 10.1109/ICIT.2012.6210093 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6210093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6210093</ieee_id><sourcerecordid>6210093</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1d34ff5f314f33b6a85826504666262a8453a5052b02c04d808221e13591835f3</originalsourceid><addsrcrecordid>eNpVUEtLxDAYjIigrP0B4iV_oPXLl0fToxQfCwse7MHbkraJRvuQNGXZf2_QvTiXYWaYOQwhNwwKxqC629bbpkBgWChkABU_I1lVaiZUyYELxPN_GvQlyZblExLKpCt5Rd5eP-YQ82jDSGMwzvmOumE-UDcH25kl-umdtkc6rnE1A_VT8kcT_TxRM_XUhOhTxadosmv4pXiYw9dyTS6cGRabnXhDmseHpn7Ody9P2_p-l_sKYs56LpyTjjPhOG-V0VKjkiCUUqjQaCG5kSCxBexA9Bo0IrOMy4ppnnobcvs36621--_gRxOO-9Md_AfvjlKR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Short-term traffic flow forecasting by mutual information and artificial neural networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hosseini, S. H. ; Moshiri, B. ; Rahimi-Kian, A. ; Araabi, B. N.</creator><creatorcontrib>Hosseini, S. H. ; Moshiri, B. ; Rahimi-Kian, A. ; Araabi, B. N.</creatorcontrib><description>Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used.</description><identifier>ISBN: 9781467303408</identifier><identifier>ISBN: 1467303402</identifier><identifier>EISBN: 9781467303422</identifier><identifier>EISBN: 9781467303415</identifier><identifier>EISBN: 1467303429</identifier><identifier>EISBN: 1467303410</identifier><identifier>DOI: 10.1109/ICIT.2012.6210093</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer languages ; Prediction algorithms</subject><ispartof>2012 IEEE International Conference on Industrial Technology, 2012, p.1136-1141</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6210093$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6210093$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hosseini, S. H.</creatorcontrib><creatorcontrib>Moshiri, B.</creatorcontrib><creatorcontrib>Rahimi-Kian, A.</creatorcontrib><creatorcontrib>Araabi, B. N.</creatorcontrib><title>Short-term traffic flow forecasting by mutual information and artificial neural networks</title><title>2012 IEEE International Conference on Industrial Technology</title><addtitle>ICIT</addtitle><description>Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used.</description><subject>Computer languages</subject><subject>Prediction algorithms</subject><isbn>9781467303408</isbn><isbn>1467303402</isbn><isbn>9781467303422</isbn><isbn>9781467303415</isbn><isbn>1467303429</isbn><isbn>1467303410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtLxDAYjIigrP0B4iV_oPXLl0fToxQfCwse7MHbkraJRvuQNGXZf2_QvTiXYWaYOQwhNwwKxqC629bbpkBgWChkABU_I1lVaiZUyYELxPN_GvQlyZblExLKpCt5Rd5eP-YQ82jDSGMwzvmOumE-UDcH25kl-umdtkc6rnE1A_VT8kcT_TxRM_XUhOhTxadosmv4pXiYw9dyTS6cGRabnXhDmseHpn7Ody9P2_p-l_sKYs56LpyTjjPhOG-V0VKjkiCUUqjQaCG5kSCxBexA9Bo0IrOMy4ppnnobcvs36621--_gRxOO-9Md_AfvjlKR</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hosseini, S. H.</creator><creator>Moshiri, B.</creator><creator>Rahimi-Kian, A.</creator><creator>Araabi, B. N.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Short-term traffic flow forecasting by mutual information and artificial neural networks</title><author>Hosseini, S. H. ; Moshiri, B. ; Rahimi-Kian, A. ; Araabi, B. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1d34ff5f314f33b6a85826504666262a8453a5052b02c04d808221e13591835f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computer languages</topic><topic>Prediction algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Hosseini, S. H.</creatorcontrib><creatorcontrib>Moshiri, B.</creatorcontrib><creatorcontrib>Rahimi-Kian, A.</creatorcontrib><creatorcontrib>Araabi, B. N.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hosseini, S. H.</au><au>Moshiri, B.</au><au>Rahimi-Kian, A.</au><au>Araabi, B. N.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Short-term traffic flow forecasting by mutual information and artificial neural networks</atitle><btitle>2012 IEEE International Conference on Industrial Technology</btitle><stitle>ICIT</stitle><date>2012-03</date><risdate>2012</risdate><spage>1136</spage><epage>1141</epage><pages>1136-1141</pages><isbn>9781467303408</isbn><isbn>1467303402</isbn><eisbn>9781467303422</eisbn><eisbn>9781467303415</eisbn><eisbn>1467303429</eisbn><eisbn>1467303410</eisbn><abstract>Short-term traffic flow forecasting is an important problem in the research area of intelligent transportation system (ITS). Recently, artificial neural networks modeling, such as MLP, have been used in various applications over nonlinear time series forecasting such as traffic control. In modeling, irrelevant inputs cause the deterioration of performance and increment of calculation cost. Therefore, to have an accurate model, some strategies are needed to choose a set of most relevant inputs. Mutual information (MI) is very effective in evaluating the nonlinear relevance of each input from the view of information theory. Feature selection (FS) method is an improved version of the MI technique. This paper presents a novel short-term traffic flow prediction model using MLP predictor and MIFS algorithm. Performance of the proposed MIFS algorithm and MLP predictor is evaluated via simulations using MATLAB subroutine. To validate the algorithm, two different types of data, namely regular and irregular (with high uncertainty) data, are used.</abstract><pub>IEEE</pub><doi>10.1109/ICIT.2012.6210093</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467303408 |
ispartof | 2012 IEEE International Conference on Industrial Technology, 2012, p.1136-1141 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6210093 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computer languages Prediction algorithms |
title | Short-term traffic flow forecasting by mutual information and artificial neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Short-term%20traffic%20flow%20forecasting%20by%20mutual%20information%20and%20artificial%20neural%20networks&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Industrial%20Technology&rft.au=Hosseini,%20S.%20H.&rft.date=2012-03&rft.spage=1136&rft.epage=1141&rft.pages=1136-1141&rft.isbn=9781467303408&rft.isbn_list=1467303402&rft_id=info:doi/10.1109/ICIT.2012.6210093&rft_dat=%3Cieee_6IE%3E6210093%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303422&rft.eisbn_list=9781467303415&rft.eisbn_list=1467303429&rft.eisbn_list=1467303410&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6210093&rfr_iscdi=true |