Lessons learned from a simulated environment for trains conduction
This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, a...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 538 |
---|---|
container_issue | |
container_start_page | 533 |
container_title | |
container_volume | |
creator | Sato, D. M. V. Borges, A. P. Leite, A. R. Dordal, O. B. Avila, B. C. Enembreck, F. Scalabrin, E. E. |
description | This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor. |
doi_str_mv | 10.1109/ICIT.2012.6209993 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6209993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6209993</ieee_id><sourcerecordid>6209993</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cad4e4191a360c2b8018e9fe07fcdef95ebd35c4c65f0daafe2c7c3019e4fe803</originalsourceid><addsrcrecordid>eNpVj01LxDAYhCMiKGt_gOwlf6D1zUc_ctSibqHgpfclm7yBLG0iSVfw31twL85leIZhYAh5YlAxBup56Iep4sB41XBQSokbUqi2Y7JpBQjJ-e0_hu6eFDmfYVO7saofyOuIOceQ6Yw6BbTUpbhQTbNfLrNetwDDt08xLBhW6mKia9J-65sY7MWsPoZHcuf0nLG4-o5M729TfyjHz4-hfxlLr2AtjbYSJVNMiwYMP3XAOlQOoXXGolM1nqyojTRN7cBq7ZCb1ghgCqXDDsSO7P9mPSIev5JfdPo5Xo-LX4MkTW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lessons learned from a simulated environment for trains conduction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sato, D. M. V. ; Borges, A. P. ; Leite, A. R. ; Dordal, O. B. ; Avila, B. C. ; Enembreck, F. ; Scalabrin, E. E.</creator><creatorcontrib>Sato, D. M. V. ; Borges, A. P. ; Leite, A. R. ; Dordal, O. B. ; Avila, B. C. ; Enembreck, F. ; Scalabrin, E. E.</creatorcontrib><description>This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor.</description><identifier>ISBN: 9781467303408</identifier><identifier>ISBN: 1467303402</identifier><identifier>EISBN: 9781467303422</identifier><identifier>EISBN: 9781467303415</identifier><identifier>EISBN: 1467303429</identifier><identifier>EISBN: 1467303410</identifier><identifier>DOI: 10.1109/ICIT.2012.6209993</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Bagging ; Boosting</subject><ispartof>2012 IEEE International Conference on Industrial Technology, 2012, p.533-538</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6209993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6209993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sato, D. M. V.</creatorcontrib><creatorcontrib>Borges, A. P.</creatorcontrib><creatorcontrib>Leite, A. R.</creatorcontrib><creatorcontrib>Dordal, O. B.</creatorcontrib><creatorcontrib>Avila, B. C.</creatorcontrib><creatorcontrib>Enembreck, F.</creatorcontrib><creatorcontrib>Scalabrin, E. E.</creatorcontrib><title>Lessons learned from a simulated environment for trains conduction</title><title>2012 IEEE International Conference on Industrial Technology</title><addtitle>ICIT</addtitle><description>This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor.</description><subject>Actuators</subject><subject>Bagging</subject><subject>Boosting</subject><isbn>9781467303408</isbn><isbn>1467303402</isbn><isbn>9781467303422</isbn><isbn>9781467303415</isbn><isbn>1467303429</isbn><isbn>1467303410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj01LxDAYhCMiKGt_gOwlf6D1zUc_ctSibqHgpfclm7yBLG0iSVfw31twL85leIZhYAh5YlAxBup56Iep4sB41XBQSokbUqi2Y7JpBQjJ-e0_hu6eFDmfYVO7saofyOuIOceQ6Yw6BbTUpbhQTbNfLrNetwDDt08xLBhW6mKia9J-65sY7MWsPoZHcuf0nLG4-o5M729TfyjHz4-hfxlLr2AtjbYSJVNMiwYMP3XAOlQOoXXGolM1nqyojTRN7cBq7ZCb1ghgCqXDDsSO7P9mPSIev5JfdPo5Xo-LX4MkTW8</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Sato, D. M. V.</creator><creator>Borges, A. P.</creator><creator>Leite, A. R.</creator><creator>Dordal, O. B.</creator><creator>Avila, B. C.</creator><creator>Enembreck, F.</creator><creator>Scalabrin, E. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Lessons learned from a simulated environment for trains conduction</title><author>Sato, D. M. V. ; Borges, A. P. ; Leite, A. R. ; Dordal, O. B. ; Avila, B. C. ; Enembreck, F. ; Scalabrin, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cad4e4191a360c2b8018e9fe07fcdef95ebd35c4c65f0daafe2c7c3019e4fe803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actuators</topic><topic>Bagging</topic><topic>Boosting</topic><toplevel>online_resources</toplevel><creatorcontrib>Sato, D. M. V.</creatorcontrib><creatorcontrib>Borges, A. P.</creatorcontrib><creatorcontrib>Leite, A. R.</creatorcontrib><creatorcontrib>Dordal, O. B.</creatorcontrib><creatorcontrib>Avila, B. C.</creatorcontrib><creatorcontrib>Enembreck, F.</creatorcontrib><creatorcontrib>Scalabrin, E. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sato, D. M. V.</au><au>Borges, A. P.</au><au>Leite, A. R.</au><au>Dordal, O. B.</au><au>Avila, B. C.</au><au>Enembreck, F.</au><au>Scalabrin, E. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lessons learned from a simulated environment for trains conduction</atitle><btitle>2012 IEEE International Conference on Industrial Technology</btitle><stitle>ICIT</stitle><date>2012-03</date><risdate>2012</risdate><spage>533</spage><epage>538</epage><pages>533-538</pages><isbn>9781467303408</isbn><isbn>1467303402</isbn><eisbn>9781467303422</eisbn><eisbn>9781467303415</eisbn><eisbn>1467303429</eisbn><eisbn>1467303410</eisbn><abstract>This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor.</abstract><pub>IEEE</pub><doi>10.1109/ICIT.2012.6209993</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467303408 |
ispartof | 2012 IEEE International Conference on Industrial Technology, 2012, p.533-538 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6209993 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Actuators Bagging Boosting |
title | Lessons learned from a simulated environment for trains conduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lessons%20learned%20from%20a%20simulated%20environment%20for%20trains%20conduction&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Industrial%20Technology&rft.au=Sato,%20D.%20M.%20V.&rft.date=2012-03&rft.spage=533&rft.epage=538&rft.pages=533-538&rft.isbn=9781467303408&rft.isbn_list=1467303402&rft_id=info:doi/10.1109/ICIT.2012.6209993&rft_dat=%3Cieee_6IE%3E6209993%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303422&rft.eisbn_list=9781467303415&rft.eisbn_list=1467303429&rft.eisbn_list=1467303410&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6209993&rfr_iscdi=true |