Lessons learned from a simulated environment for trains conduction

This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sato, D. M. V., Borges, A. P., Leite, A. R., Dordal, O. B., Avila, B. C., Enembreck, F., Scalabrin, E. E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 538
container_issue
container_start_page 533
container_title
container_volume
creator Sato, D. M. V.
Borges, A. P.
Leite, A. R.
Dordal, O. B.
Avila, B. C.
Enembreck, F.
Scalabrin, E. E.
description This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor.
doi_str_mv 10.1109/ICIT.2012.6209993
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6209993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6209993</ieee_id><sourcerecordid>6209993</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-cad4e4191a360c2b8018e9fe07fcdef95ebd35c4c65f0daafe2c7c3019e4fe803</originalsourceid><addsrcrecordid>eNpVj01LxDAYhCMiKGt_gOwlf6D1zUc_ctSibqHgpfclm7yBLG0iSVfw31twL85leIZhYAh5YlAxBup56Iep4sB41XBQSokbUqi2Y7JpBQjJ-e0_hu6eFDmfYVO7saofyOuIOceQ6Yw6BbTUpbhQTbNfLrNetwDDt08xLBhW6mKia9J-65sY7MWsPoZHcuf0nLG4-o5M729TfyjHz4-hfxlLr2AtjbYSJVNMiwYMP3XAOlQOoXXGolM1nqyojTRN7cBq7ZCb1ghgCqXDDsSO7P9mPSIev5JfdPo5Xo-LX4MkTW8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lessons learned from a simulated environment for trains conduction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sato, D. M. V. ; Borges, A. P. ; Leite, A. R. ; Dordal, O. B. ; Avila, B. C. ; Enembreck, F. ; Scalabrin, E. E.</creator><creatorcontrib>Sato, D. M. V. ; Borges, A. P. ; Leite, A. R. ; Dordal, O. B. ; Avila, B. C. ; Enembreck, F. ; Scalabrin, E. E.</creatorcontrib><description>This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor.</description><identifier>ISBN: 9781467303408</identifier><identifier>ISBN: 1467303402</identifier><identifier>EISBN: 9781467303422</identifier><identifier>EISBN: 9781467303415</identifier><identifier>EISBN: 1467303429</identifier><identifier>EISBN: 1467303410</identifier><identifier>DOI: 10.1109/ICIT.2012.6209993</identifier><language>eng</language><publisher>IEEE</publisher><subject>Actuators ; Bagging ; Boosting</subject><ispartof>2012 IEEE International Conference on Industrial Technology, 2012, p.533-538</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6209993$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6209993$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sato, D. M. V.</creatorcontrib><creatorcontrib>Borges, A. P.</creatorcontrib><creatorcontrib>Leite, A. R.</creatorcontrib><creatorcontrib>Dordal, O. B.</creatorcontrib><creatorcontrib>Avila, B. C.</creatorcontrib><creatorcontrib>Enembreck, F.</creatorcontrib><creatorcontrib>Scalabrin, E. E.</creatorcontrib><title>Lessons learned from a simulated environment for trains conduction</title><title>2012 IEEE International Conference on Industrial Technology</title><addtitle>ICIT</addtitle><description>This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor.</description><subject>Actuators</subject><subject>Bagging</subject><subject>Boosting</subject><isbn>9781467303408</isbn><isbn>1467303402</isbn><isbn>9781467303422</isbn><isbn>9781467303415</isbn><isbn>1467303429</isbn><isbn>1467303410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj01LxDAYhCMiKGt_gOwlf6D1zUc_ctSibqHgpfclm7yBLG0iSVfw31twL85leIZhYAh5YlAxBup56Iep4sB41XBQSokbUqi2Y7JpBQjJ-e0_hu6eFDmfYVO7saofyOuIOceQ6Yw6BbTUpbhQTbNfLrNetwDDt08xLBhW6mKia9J-65sY7MWsPoZHcuf0nLG4-o5M729TfyjHz4-hfxlLr2AtjbYSJVNMiwYMP3XAOlQOoXXGolM1nqyojTRN7cBq7ZCb1ghgCqXDDsSO7P9mPSIev5JfdPo5Xo-LX4MkTW8</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Sato, D. M. V.</creator><creator>Borges, A. P.</creator><creator>Leite, A. R.</creator><creator>Dordal, O. B.</creator><creator>Avila, B. C.</creator><creator>Enembreck, F.</creator><creator>Scalabrin, E. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Lessons learned from a simulated environment for trains conduction</title><author>Sato, D. M. V. ; Borges, A. P. ; Leite, A. R. ; Dordal, O. B. ; Avila, B. C. ; Enembreck, F. ; Scalabrin, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-cad4e4191a360c2b8018e9fe07fcdef95ebd35c4c65f0daafe2c7c3019e4fe803</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Actuators</topic><topic>Bagging</topic><topic>Boosting</topic><toplevel>online_resources</toplevel><creatorcontrib>Sato, D. M. V.</creatorcontrib><creatorcontrib>Borges, A. P.</creatorcontrib><creatorcontrib>Leite, A. R.</creatorcontrib><creatorcontrib>Dordal, O. B.</creatorcontrib><creatorcontrib>Avila, B. C.</creatorcontrib><creatorcontrib>Enembreck, F.</creatorcontrib><creatorcontrib>Scalabrin, E. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sato, D. M. V.</au><au>Borges, A. P.</au><au>Leite, A. R.</au><au>Dordal, O. B.</au><au>Avila, B. C.</au><au>Enembreck, F.</au><au>Scalabrin, E. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lessons learned from a simulated environment for trains conduction</atitle><btitle>2012 IEEE International Conference on Industrial Technology</btitle><stitle>ICIT</stitle><date>2012-03</date><risdate>2012</risdate><spage>533</spage><epage>538</epage><pages>533-538</pages><isbn>9781467303408</isbn><isbn>1467303402</isbn><eisbn>9781467303422</eisbn><eisbn>9781467303415</eisbn><eisbn>1467303429</eisbn><eisbn>1467303410</eisbn><abstract>This paper consolidates and discuss the results of a software agent development, named SDriver, which is able to drive an intercity freight train in a secure, economic and fast way. The SDriver executes a small set of instructions, named: reducing, increasing or maintaining the acceleration point, and start breaking. Three approaches have been studied to implement the core of SDriver: (i) machine learning (classification methods), (ii) distributed constraint optimization, and (iii) specialized rules (if-then). The SDriver performance was evaluated comparing fuel consumption and actions similarity with a real conduction, using a simulated environment. The validation of the knowledge discovered from the machine learning approach was done quantitatively, calculating a degree of similarity between the simulation and the history of travel. The main results are expressed by their mean values: 32% of fuel consumption reduction and 85% action similarity between the SDriver and the real conductor.</abstract><pub>IEEE</pub><doi>10.1109/ICIT.2012.6209993</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467303408
ispartof 2012 IEEE International Conference on Industrial Technology, 2012, p.533-538
issn
language eng
recordid cdi_ieee_primary_6209993
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Actuators
Bagging
Boosting
title Lessons learned from a simulated environment for trains conduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lessons%20learned%20from%20a%20simulated%20environment%20for%20trains%20conduction&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Industrial%20Technology&rft.au=Sato,%20D.%20M.%20V.&rft.date=2012-03&rft.spage=533&rft.epage=538&rft.pages=533-538&rft.isbn=9781467303408&rft.isbn_list=1467303402&rft_id=info:doi/10.1109/ICIT.2012.6209993&rft_dat=%3Cieee_6IE%3E6209993%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303422&rft.eisbn_list=9781467303415&rft.eisbn_list=1467303429&rft.eisbn_list=1467303410&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6209993&rfr_iscdi=true