A real-time control of maglev system using neural networks and genetic algorithms

In this paper a novel method is proposed to control a magnetic levitation system (MAGLEV) based on neural networks and genetic algorithm. The output of the system is restricted due to manufacturing considerations. Structure of identifier is modeled using a multilayer feedforward neural network. Base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Daghooghi, Z., Menhaj, M. B., Zomorodian, A., Akramizadeh, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 532
container_issue
container_start_page 527
container_title
container_volume
creator Daghooghi, Z.
Menhaj, M. B.
Zomorodian, A.
Akramizadeh, A.
description In this paper a novel method is proposed to control a magnetic levitation system (MAGLEV) based on neural networks and genetic algorithm. The output of the system is restricted due to manufacturing considerations. Structure of identifier is modeled using a multilayer feedforward neural network. Based on the proposed fitness function, genetic algorithm is used to optimally adjust parameters of the neural network. The proposed neuro-identifier system receives the levitated ball positions and system inputs in the previous time step and predicts the next ball position. The identifier is guaranteed to learn the rule that a large (small) system inputs will generate large (small) outputs. As long as the identifier is learned, the system can be controlled. Control signals are frequently updated within equal time intervals, where this proper control signals are calculated using the back propagation mechanism. Whenever an input is applied to the system, the controller starts calculating the next control signal. Simulations are performed in a Delphi 7 environment, where the system equations are solved using Runge-Kutta algorithm. The simulation results present the effectiveness of the proposed methods.
doi_str_mv 10.1109/ICIT.2012.6209992
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6209992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6209992</ieee_id><sourcerecordid>6209992</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-eb24813a67c58676b9eaf2b9825ee017c1c033546d62604fce4e6b0122f0cd2f3</originalsourceid><addsrcrecordid>eNpVkMtKxDAYhSMiKGMfQNzkBVpza9Ish8FLYUCE7oc0_VOjaStJRpm3t-BsPJuPb3PgHITuKKkoJfqh3bVdxQhllWREa80uUKFVQ4VUnHDB2OU_J801KlL6IGvU6rq-QW9bHMGEMvsJsF3mHJeAF4cnMwb4xumUMkz4mPw84hmO0YQV-WeJnwmbecAjrOotNmFcos_vU7pFV86EBMWZG9Q9PXa7l3L_-tzutvvSa5JL6JloKDdS2bqRSvYajGO9blgNQKiy1BLOayEHySQRzoIA2a9TmSN2YI5v0P1frQeAw1f0k4mnw_kH_gs4UVEj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A real-time control of maglev system using neural networks and genetic algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Daghooghi, Z. ; Menhaj, M. B. ; Zomorodian, A. ; Akramizadeh, A.</creator><creatorcontrib>Daghooghi, Z. ; Menhaj, M. B. ; Zomorodian, A. ; Akramizadeh, A.</creatorcontrib><description>In this paper a novel method is proposed to control a magnetic levitation system (MAGLEV) based on neural networks and genetic algorithm. The output of the system is restricted due to manufacturing considerations. Structure of identifier is modeled using a multilayer feedforward neural network. Based on the proposed fitness function, genetic algorithm is used to optimally adjust parameters of the neural network. The proposed neuro-identifier system receives the levitated ball positions and system inputs in the previous time step and predicts the next ball position. The identifier is guaranteed to learn the rule that a large (small) system inputs will generate large (small) outputs. As long as the identifier is learned, the system can be controlled. Control signals are frequently updated within equal time intervals, where this proper control signals are calculated using the back propagation mechanism. Whenever an input is applied to the system, the controller starts calculating the next control signal. Simulations are performed in a Delphi 7 environment, where the system equations are solved using Runge-Kutta algorithm. The simulation results present the effectiveness of the proposed methods.</description><identifier>ISBN: 9781467303408</identifier><identifier>ISBN: 1467303402</identifier><identifier>EISBN: 9781467303422</identifier><identifier>EISBN: 9781467303415</identifier><identifier>EISBN: 1467303429</identifier><identifier>EISBN: 1467303410</identifier><identifier>DOI: 10.1109/ICIT.2012.6209992</identifier><language>eng</language><publisher>IEEE</publisher><subject>back propagation ; Biological cells ; genetic algorithm ; Indium phosphide ; Maglev ; multilayer perceptron neural networks ; Neural networks</subject><ispartof>2012 IEEE International Conference on Industrial Technology, 2012, p.527-532</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6209992$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6209992$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Daghooghi, Z.</creatorcontrib><creatorcontrib>Menhaj, M. B.</creatorcontrib><creatorcontrib>Zomorodian, A.</creatorcontrib><creatorcontrib>Akramizadeh, A.</creatorcontrib><title>A real-time control of maglev system using neural networks and genetic algorithms</title><title>2012 IEEE International Conference on Industrial Technology</title><addtitle>ICIT</addtitle><description>In this paper a novel method is proposed to control a magnetic levitation system (MAGLEV) based on neural networks and genetic algorithm. The output of the system is restricted due to manufacturing considerations. Structure of identifier is modeled using a multilayer feedforward neural network. Based on the proposed fitness function, genetic algorithm is used to optimally adjust parameters of the neural network. The proposed neuro-identifier system receives the levitated ball positions and system inputs in the previous time step and predicts the next ball position. The identifier is guaranteed to learn the rule that a large (small) system inputs will generate large (small) outputs. As long as the identifier is learned, the system can be controlled. Control signals are frequently updated within equal time intervals, where this proper control signals are calculated using the back propagation mechanism. Whenever an input is applied to the system, the controller starts calculating the next control signal. Simulations are performed in a Delphi 7 environment, where the system equations are solved using Runge-Kutta algorithm. The simulation results present the effectiveness of the proposed methods.</description><subject>back propagation</subject><subject>Biological cells</subject><subject>genetic algorithm</subject><subject>Indium phosphide</subject><subject>Maglev</subject><subject>multilayer perceptron neural networks</subject><subject>Neural networks</subject><isbn>9781467303408</isbn><isbn>1467303402</isbn><isbn>9781467303422</isbn><isbn>9781467303415</isbn><isbn>1467303429</isbn><isbn>1467303410</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkMtKxDAYhSMiKGMfQNzkBVpza9Ish8FLYUCE7oc0_VOjaStJRpm3t-BsPJuPb3PgHITuKKkoJfqh3bVdxQhllWREa80uUKFVQ4VUnHDB2OU_J801KlL6IGvU6rq-QW9bHMGEMvsJsF3mHJeAF4cnMwb4xumUMkz4mPw84hmO0YQV-WeJnwmbecAjrOotNmFcos_vU7pFV86EBMWZG9Q9PXa7l3L_-tzutvvSa5JL6JloKDdS2bqRSvYajGO9blgNQKiy1BLOayEHySQRzoIA2a9TmSN2YI5v0P1frQeAw1f0k4mnw_kH_gs4UVEj</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Daghooghi, Z.</creator><creator>Menhaj, M. B.</creator><creator>Zomorodian, A.</creator><creator>Akramizadeh, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>A real-time control of maglev system using neural networks and genetic algorithms</title><author>Daghooghi, Z. ; Menhaj, M. B. ; Zomorodian, A. ; Akramizadeh, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-eb24813a67c58676b9eaf2b9825ee017c1c033546d62604fce4e6b0122f0cd2f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>back propagation</topic><topic>Biological cells</topic><topic>genetic algorithm</topic><topic>Indium phosphide</topic><topic>Maglev</topic><topic>multilayer perceptron neural networks</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Daghooghi, Z.</creatorcontrib><creatorcontrib>Menhaj, M. B.</creatorcontrib><creatorcontrib>Zomorodian, A.</creatorcontrib><creatorcontrib>Akramizadeh, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Daghooghi, Z.</au><au>Menhaj, M. B.</au><au>Zomorodian, A.</au><au>Akramizadeh, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A real-time control of maglev system using neural networks and genetic algorithms</atitle><btitle>2012 IEEE International Conference on Industrial Technology</btitle><stitle>ICIT</stitle><date>2012-03</date><risdate>2012</risdate><spage>527</spage><epage>532</epage><pages>527-532</pages><isbn>9781467303408</isbn><isbn>1467303402</isbn><eisbn>9781467303422</eisbn><eisbn>9781467303415</eisbn><eisbn>1467303429</eisbn><eisbn>1467303410</eisbn><abstract>In this paper a novel method is proposed to control a magnetic levitation system (MAGLEV) based on neural networks and genetic algorithm. The output of the system is restricted due to manufacturing considerations. Structure of identifier is modeled using a multilayer feedforward neural network. Based on the proposed fitness function, genetic algorithm is used to optimally adjust parameters of the neural network. The proposed neuro-identifier system receives the levitated ball positions and system inputs in the previous time step and predicts the next ball position. The identifier is guaranteed to learn the rule that a large (small) system inputs will generate large (small) outputs. As long as the identifier is learned, the system can be controlled. Control signals are frequently updated within equal time intervals, where this proper control signals are calculated using the back propagation mechanism. Whenever an input is applied to the system, the controller starts calculating the next control signal. Simulations are performed in a Delphi 7 environment, where the system equations are solved using Runge-Kutta algorithm. The simulation results present the effectiveness of the proposed methods.</abstract><pub>IEEE</pub><doi>10.1109/ICIT.2012.6209992</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467303408
ispartof 2012 IEEE International Conference on Industrial Technology, 2012, p.527-532
issn
language eng
recordid cdi_ieee_primary_6209992
source IEEE Electronic Library (IEL) Conference Proceedings
subjects back propagation
Biological cells
genetic algorithm
Indium phosphide
Maglev
multilayer perceptron neural networks
Neural networks
title A real-time control of maglev system using neural networks and genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20real-time%20control%20of%20maglev%20system%20using%20neural%20networks%20and%20genetic%20algorithms&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Industrial%20Technology&rft.au=Daghooghi,%20Z.&rft.date=2012-03&rft.spage=527&rft.epage=532&rft.pages=527-532&rft.isbn=9781467303408&rft.isbn_list=1467303402&rft_id=info:doi/10.1109/ICIT.2012.6209992&rft_dat=%3Cieee_6IE%3E6209992%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303422&rft.eisbn_list=9781467303415&rft.eisbn_list=1467303429&rft.eisbn_list=1467303410&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6209992&rfr_iscdi=true