A Novel SAR Image Change Detection Based on Graph-Cut and Generalized Gaussian Model

In this letter, a robust and fast unsupervised change-detection framework is proposed for synthetic aperture radar (SAR) images. It contains three aspects. First, a robust difference image is constructed with the idea of probability patch-based, and it can suppress the speckle effects on the changed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2013-01, Vol.10 (1), p.14-18
Hauptverfasser: Zhang, Xiaohua, Chen, Jiawei, Meng, Hongyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 14
container_title IEEE geoscience and remote sensing letters
container_volume 10
creator Zhang, Xiaohua
Chen, Jiawei
Meng, Hongyun
description In this letter, a robust and fast unsupervised change-detection framework is proposed for synthetic aperture radar (SAR) images. It contains three aspects. First, a robust difference image is constructed with the idea of probability patch-based, and it can suppress the speckle effects on the changed regions and enhance the change information synchronously. Then, each class of the difference image is modeled by generalized Gaussian distribution (GGD), and its parameters are learned by the expectation-maximization algorithm. Moreover, the graph-cut algorithm is employed on the difference image to extract the spatial prior information, based on which the parameters of GGD are initialized well via the fuzzy c -means algorithm. Finally, the Bayesian inference for maximum a posteriori performs the final detection. Experimental results on simulated and real SAR data sets confirm the robustness and accuracy of the proposed algorithm in which graph-cut and GGD make great contribution on improving the accuracy of detection and speed of algorithm.
doi_str_mv 10.1109/LGRS.2012.2189867
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6204324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6204324</ieee_id><sourcerecordid>1136421184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-60350a8263ec4b2319199ee583c496d04c3b1c785f726b919fb792bb618fb4723</originalsourceid><addsrcrecordid>eNpdkEFLw0AUhIMoWKs_QLwsePGSum93s9k91qixUBXaCt7CJnmxkTSpu4mgv97EFg-e3sB8MzzG886BTgCovp7Hi-WEUWATBkorGR54IwgC5dMghMNBi8APtHo99k6ce6eUCaXCkbeakqfmEyuynC7IbGPekERrU_fnFlvM2rKpyY1xmJNexNZs137UtcTUOYmxRmuq8rs3Y9M5V5qaPDY5VqfeUWEqh2f7O_Ze7u9W0YM_f45n0XTuZ5zJ1peUB9QoJjlmImUcNGiNGCieCS1zKjKeQhaqoAiZTHuzSEPN0lSCKlIRMj72rna9W9t8dOjaZFO6DKvK1Nh0LgHgUjAAJXr08h_63nS27r9LgHJNQYa_hbCjMts4Z7FItrbcGPvVQ8mwczLsnAw7J_ud-8zFLlMi4h8vGRWcCf4DuBN16w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1039016772</pqid></control><display><type>article</type><title>A Novel SAR Image Change Detection Based on Graph-Cut and Generalized Gaussian Model</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Zhang, Xiaohua ; Chen, Jiawei ; Meng, Hongyun</creator><creatorcontrib>Zhang, Xiaohua ; Chen, Jiawei ; Meng, Hongyun</creatorcontrib><description>In this letter, a robust and fast unsupervised change-detection framework is proposed for synthetic aperture radar (SAR) images. It contains three aspects. First, a robust difference image is constructed with the idea of probability patch-based, and it can suppress the speckle effects on the changed regions and enhance the change information synchronously. Then, each class of the difference image is modeled by generalized Gaussian distribution (GGD), and its parameters are learned by the expectation-maximization algorithm. Moreover, the graph-cut algorithm is employed on the difference image to extract the spatial prior information, based on which the parameters of GGD are initialized well via the fuzzy c -means algorithm. Finally, the Bayesian inference for maximum a posteriori performs the final detection. Experimental results on simulated and real SAR data sets confirm the robustness and accuracy of the proposed algorithm in which graph-cut and GGD make great contribution on improving the accuracy of detection and speed of algorithm.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2012.2189867</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Algorithms ; Change detection ; Change detection algorithms ; Convergence ; Estimation ; expectation maximization ; Fuzzy ; generalized Gaussian model ; graph cut ; Inference ; Mathematical models ; Noise measurement ; Robustness ; Speckle ; Studies ; Synthetic aperture radar</subject><ispartof>IEEE geoscience and remote sensing letters, 2013-01, Vol.10 (1), p.14-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-60350a8263ec4b2319199ee583c496d04c3b1c785f726b919fb792bb618fb4723</citedby><cites>FETCH-LOGICAL-c326t-60350a8263ec4b2319199ee583c496d04c3b1c785f726b919fb792bb618fb4723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6204324$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6204324$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Meng, Hongyun</creatorcontrib><title>A Novel SAR Image Change Detection Based on Graph-Cut and Generalized Gaussian Model</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>In this letter, a robust and fast unsupervised change-detection framework is proposed for synthetic aperture radar (SAR) images. It contains three aspects. First, a robust difference image is constructed with the idea of probability patch-based, and it can suppress the speckle effects on the changed regions and enhance the change information synchronously. Then, each class of the difference image is modeled by generalized Gaussian distribution (GGD), and its parameters are learned by the expectation-maximization algorithm. Moreover, the graph-cut algorithm is employed on the difference image to extract the spatial prior information, based on which the parameters of GGD are initialized well via the fuzzy c -means algorithm. Finally, the Bayesian inference for maximum a posteriori performs the final detection. Experimental results on simulated and real SAR data sets confirm the robustness and accuracy of the proposed algorithm in which graph-cut and GGD make great contribution on improving the accuracy of detection and speed of algorithm.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Change detection</subject><subject>Change detection algorithms</subject><subject>Convergence</subject><subject>Estimation</subject><subject>expectation maximization</subject><subject>Fuzzy</subject><subject>generalized Gaussian model</subject><subject>graph cut</subject><subject>Inference</subject><subject>Mathematical models</subject><subject>Noise measurement</subject><subject>Robustness</subject><subject>Speckle</subject><subject>Studies</subject><subject>Synthetic aperture radar</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEFLw0AUhIMoWKs_QLwsePGSum93s9k91qixUBXaCt7CJnmxkTSpu4mgv97EFg-e3sB8MzzG886BTgCovp7Hi-WEUWATBkorGR54IwgC5dMghMNBi8APtHo99k6ce6eUCaXCkbeakqfmEyuynC7IbGPekERrU_fnFlvM2rKpyY1xmJNexNZs137UtcTUOYmxRmuq8rs3Y9M5V5qaPDY5VqfeUWEqh2f7O_Ze7u9W0YM_f45n0XTuZ5zJ1peUB9QoJjlmImUcNGiNGCieCS1zKjKeQhaqoAiZTHuzSEPN0lSCKlIRMj72rna9W9t8dOjaZFO6DKvK1Nh0LgHgUjAAJXr08h_63nS27r9LgHJNQYa_hbCjMts4Z7FItrbcGPvVQ8mwczLsnAw7J_ud-8zFLlMi4h8vGRWcCf4DuBN16w</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Zhang, Xiaohua</creator><creator>Chen, Jiawei</creator><creator>Meng, Hongyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201301</creationdate><title>A Novel SAR Image Change Detection Based on Graph-Cut and Generalized Gaussian Model</title><author>Zhang, Xiaohua ; Chen, Jiawei ; Meng, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-60350a8263ec4b2319199ee583c496d04c3b1c785f726b919fb792bb618fb4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Change detection</topic><topic>Change detection algorithms</topic><topic>Convergence</topic><topic>Estimation</topic><topic>expectation maximization</topic><topic>Fuzzy</topic><topic>generalized Gaussian model</topic><topic>graph cut</topic><topic>Inference</topic><topic>Mathematical models</topic><topic>Noise measurement</topic><topic>Robustness</topic><topic>Speckle</topic><topic>Studies</topic><topic>Synthetic aperture radar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaohua</creatorcontrib><creatorcontrib>Chen, Jiawei</creatorcontrib><creatorcontrib>Meng, Hongyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xiaohua</au><au>Chen, Jiawei</au><au>Meng, Hongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel SAR Image Change Detection Based on Graph-Cut and Generalized Gaussian Model</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2013-01</date><risdate>2013</risdate><volume>10</volume><issue>1</issue><spage>14</spage><epage>18</epage><pages>14-18</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>In this letter, a robust and fast unsupervised change-detection framework is proposed for synthetic aperture radar (SAR) images. It contains three aspects. First, a robust difference image is constructed with the idea of probability patch-based, and it can suppress the speckle effects on the changed regions and enhance the change information synchronously. Then, each class of the difference image is modeled by generalized Gaussian distribution (GGD), and its parameters are learned by the expectation-maximization algorithm. Moreover, the graph-cut algorithm is employed on the difference image to extract the spatial prior information, based on which the parameters of GGD are initialized well via the fuzzy c -means algorithm. Finally, the Bayesian inference for maximum a posteriori performs the final detection. Experimental results on simulated and real SAR data sets confirm the robustness and accuracy of the proposed algorithm in which graph-cut and GGD make great contribution on improving the accuracy of detection and speed of algorithm.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2012.2189867</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2013-01, Vol.10 (1), p.14-18
issn 1545-598X
1558-0571
language eng
recordid cdi_ieee_primary_6204324
source IEEE/IET Electronic Library (IEL)
subjects Accuracy
Algorithms
Change detection
Change detection algorithms
Convergence
Estimation
expectation maximization
Fuzzy
generalized Gaussian model
graph cut
Inference
Mathematical models
Noise measurement
Robustness
Speckle
Studies
Synthetic aperture radar
title A Novel SAR Image Change Detection Based on Graph-Cut and Generalized Gaussian Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A00%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20SAR%20Image%20Change%20Detection%20Based%20on%20Graph-Cut%20and%20Generalized%20Gaussian%20Model&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhang,%20Xiaohua&rft.date=2013-01&rft.volume=10&rft.issue=1&rft.spage=14&rft.epage=18&rft.pages=14-18&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2012.2189867&rft_dat=%3Cproquest_RIE%3E1136421184%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1039016772&rft_id=info:pmid/&rft_ieee_id=6204324&rfr_iscdi=true