An improved coupled spectral regression for heterogeneous face recognition

Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhen Lei, Changtao Zhou, Dong Yi, Jain, A. K., Li, S. Z.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 7
container_title
container_volume
creator Zhen Lei
Changtao Zhou
Dong Yi
Jain, A. K.
Li, S. Z.
description Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.
doi_str_mv 10.1109/ICB.2012.6199751
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6199751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6199751</ieee_id><sourcerecordid>6199751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c137t-659d92599a6ca8fb1b42b9ef627c11cea03eb9e0443e87a9202901253e4fefd73</originalsourceid><addsrcrecordid>eNpVkE1LxDAYhCMquKy9C17yB1rz1aTvcS26rix40fOSpm9qpduUpCv47y24F08PAzMDM4TccVZwzuBhVz8WgnFRaA5gSn5BMjAVV9pIJsGIy39al1dkJaTRuVpCNyRL6YsxxkGDMGpFXjcj7Y9TDN_YUhdO07AwTejmaAcasYuYUh9G6kOknzhjDB2OGE6JeutwcbjQjf28WG7JtbdDwuzMNfl4fnqvX_L923ZXb_a549LMuS6hBVECWO1s5RveKNEAei2M49yhZRIXzZSSWBkLgglY5pYSlUffGrkm93-9PSIeptgfbfw5nN-Qv1cLUSk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved coupled spectral regression for heterogeneous face recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhen Lei ; Changtao Zhou ; Dong Yi ; Jain, A. K. ; Li, S. Z.</creator><creatorcontrib>Zhen Lei ; Changtao Zhou ; Dong Yi ; Jain, A. K. ; Li, S. Z.</creatorcontrib><description>Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.</description><identifier>ISSN: 2376-4201</identifier><identifier>ISBN: 9781467303965</identifier><identifier>ISBN: 1467303968</identifier><identifier>EISBN: 9781467303972</identifier><identifier>EISBN: 9781467303958</identifier><identifier>EISBN: 1467303976</identifier><identifier>EISBN: 146730395X</identifier><identifier>DOI: 10.1109/ICB.2012.6199751</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Face recognition ; Image resolution ; Kernel ; Probes ; Training</subject><ispartof>2012 5th IAPR International Conference on Biometrics (ICB), 2012, p.7-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c137t-659d92599a6ca8fb1b42b9ef627c11cea03eb9e0443e87a9202901253e4fefd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6199751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6199751$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Jain, A. K.</creatorcontrib><creatorcontrib>Li, S. Z.</creatorcontrib><title>An improved coupled spectral regression for heterogeneous face recognition</title><title>2012 5th IAPR International Conference on Biometrics (ICB)</title><addtitle>ICB</addtitle><description>Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.</description><subject>Face</subject><subject>Face recognition</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>Probes</subject><subject>Training</subject><issn>2376-4201</issn><isbn>9781467303965</isbn><isbn>1467303968</isbn><isbn>9781467303972</isbn><isbn>9781467303958</isbn><isbn>1467303976</isbn><isbn>146730395X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1LxDAYhCMquKy9C17yB1rz1aTvcS26rix40fOSpm9qpduUpCv47y24F08PAzMDM4TccVZwzuBhVz8WgnFRaA5gSn5BMjAVV9pIJsGIy39al1dkJaTRuVpCNyRL6YsxxkGDMGpFXjcj7Y9TDN_YUhdO07AwTejmaAcasYuYUh9G6kOknzhjDB2OGE6JeutwcbjQjf28WG7JtbdDwuzMNfl4fnqvX_L923ZXb_a549LMuS6hBVECWO1s5RveKNEAei2M49yhZRIXzZSSWBkLgglY5pYSlUffGrkm93-9PSIeptgfbfw5nN-Qv1cLUSk</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Zhen Lei</creator><creator>Changtao Zhou</creator><creator>Dong Yi</creator><creator>Jain, A. K.</creator><creator>Li, S. Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>An improved coupled spectral regression for heterogeneous face recognition</title><author>Zhen Lei ; Changtao Zhou ; Dong Yi ; Jain, A. K. ; Li, S. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c137t-659d92599a6ca8fb1b42b9ef627c11cea03eb9e0443e87a9202901253e4fefd73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Face</topic><topic>Face recognition</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>Probes</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Jain, A. K.</creatorcontrib><creatorcontrib>Li, S. Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhen Lei</au><au>Changtao Zhou</au><au>Dong Yi</au><au>Jain, A. K.</au><au>Li, S. Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved coupled spectral regression for heterogeneous face recognition</atitle><btitle>2012 5th IAPR International Conference on Biometrics (ICB)</btitle><stitle>ICB</stitle><date>2012-03</date><risdate>2012</risdate><spage>7</spage><epage>12</epage><pages>7-12</pages><issn>2376-4201</issn><isbn>9781467303965</isbn><isbn>1467303968</isbn><eisbn>9781467303972</eisbn><eisbn>9781467303958</eisbn><eisbn>1467303976</eisbn><eisbn>146730395X</eisbn><abstract>Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICB.2012.6199751</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2376-4201
ispartof 2012 5th IAPR International Conference on Biometrics (ICB), 2012, p.7-12
issn 2376-4201
language eng
recordid cdi_ieee_primary_6199751
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Face
Face recognition
Image resolution
Kernel
Probes
Training
title An improved coupled spectral regression for heterogeneous face recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20coupled%20spectral%20regression%20for%20heterogeneous%20face%20recognition&rft.btitle=2012%205th%20IAPR%20International%20Conference%20on%20Biometrics%20(ICB)&rft.au=Zhen%20Lei&rft.date=2012-03&rft.spage=7&rft.epage=12&rft.pages=7-12&rft.issn=2376-4201&rft.isbn=9781467303965&rft.isbn_list=1467303968&rft_id=info:doi/10.1109/ICB.2012.6199751&rft_dat=%3Cieee_6IE%3E6199751%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303972&rft.eisbn_list=9781467303958&rft.eisbn_list=1467303976&rft.eisbn_list=146730395X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6199751&rfr_iscdi=true