An improved coupled spectral regression for heterogeneous face recognition
Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities fr...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | |
container_start_page | 7 |
container_title | |
container_volume | |
creator | Zhen Lei Changtao Zhou Dong Yi Jain, A. K. Li, S. Z. |
description | Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method. |
doi_str_mv | 10.1109/ICB.2012.6199751 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6199751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6199751</ieee_id><sourcerecordid>6199751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c137t-659d92599a6ca8fb1b42b9ef627c11cea03eb9e0443e87a9202901253e4fefd73</originalsourceid><addsrcrecordid>eNpVkE1LxDAYhCMquKy9C17yB1rz1aTvcS26rix40fOSpm9qpduUpCv47y24F08PAzMDM4TccVZwzuBhVz8WgnFRaA5gSn5BMjAVV9pIJsGIy39al1dkJaTRuVpCNyRL6YsxxkGDMGpFXjcj7Y9TDN_YUhdO07AwTejmaAcasYuYUh9G6kOknzhjDB2OGE6JeutwcbjQjf28WG7JtbdDwuzMNfl4fnqvX_L923ZXb_a549LMuS6hBVECWO1s5RveKNEAei2M49yhZRIXzZSSWBkLgglY5pYSlUffGrkm93-9PSIeptgfbfw5nN-Qv1cLUSk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved coupled spectral regression for heterogeneous face recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhen Lei ; Changtao Zhou ; Dong Yi ; Jain, A. K. ; Li, S. Z.</creator><creatorcontrib>Zhen Lei ; Changtao Zhou ; Dong Yi ; Jain, A. K. ; Li, S. Z.</creatorcontrib><description>Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.</description><identifier>ISSN: 2376-4201</identifier><identifier>ISBN: 9781467303965</identifier><identifier>ISBN: 1467303968</identifier><identifier>EISBN: 9781467303972</identifier><identifier>EISBN: 9781467303958</identifier><identifier>EISBN: 1467303976</identifier><identifier>EISBN: 146730395X</identifier><identifier>DOI: 10.1109/ICB.2012.6199751</identifier><language>eng</language><publisher>IEEE</publisher><subject>Face ; Face recognition ; Image resolution ; Kernel ; Probes ; Training</subject><ispartof>2012 5th IAPR International Conference on Biometrics (ICB), 2012, p.7-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c137t-659d92599a6ca8fb1b42b9ef627c11cea03eb9e0443e87a9202901253e4fefd73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6199751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6199751$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Jain, A. K.</creatorcontrib><creatorcontrib>Li, S. Z.</creatorcontrib><title>An improved coupled spectral regression for heterogeneous face recognition</title><title>2012 5th IAPR International Conference on Biometrics (ICB)</title><addtitle>ICB</addtitle><description>Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.</description><subject>Face</subject><subject>Face recognition</subject><subject>Image resolution</subject><subject>Kernel</subject><subject>Probes</subject><subject>Training</subject><issn>2376-4201</issn><isbn>9781467303965</isbn><isbn>1467303968</isbn><isbn>9781467303972</isbn><isbn>9781467303958</isbn><isbn>1467303976</isbn><isbn>146730395X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1LxDAYhCMquKy9C17yB1rz1aTvcS26rix40fOSpm9qpduUpCv47y24F08PAzMDM4TccVZwzuBhVz8WgnFRaA5gSn5BMjAVV9pIJsGIy39al1dkJaTRuVpCNyRL6YsxxkGDMGpFXjcj7Y9TDN_YUhdO07AwTejmaAcasYuYUh9G6kOknzhjDB2OGE6JeutwcbjQjf28WG7JtbdDwuzMNfl4fnqvX_L923ZXb_a549LMuS6hBVECWO1s5RveKNEAei2M49yhZRIXzZSSWBkLgglY5pYSlUffGrkm93-9PSIeptgfbfw5nN-Qv1cLUSk</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Zhen Lei</creator><creator>Changtao Zhou</creator><creator>Dong Yi</creator><creator>Jain, A. K.</creator><creator>Li, S. Z.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>An improved coupled spectral regression for heterogeneous face recognition</title><author>Zhen Lei ; Changtao Zhou ; Dong Yi ; Jain, A. K. ; Li, S. Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c137t-659d92599a6ca8fb1b42b9ef627c11cea03eb9e0443e87a9202901253e4fefd73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Face</topic><topic>Face recognition</topic><topic>Image resolution</topic><topic>Kernel</topic><topic>Probes</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhen Lei</creatorcontrib><creatorcontrib>Changtao Zhou</creatorcontrib><creatorcontrib>Dong Yi</creatorcontrib><creatorcontrib>Jain, A. K.</creatorcontrib><creatorcontrib>Li, S. Z.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhen Lei</au><au>Changtao Zhou</au><au>Dong Yi</au><au>Jain, A. K.</au><au>Li, S. Z.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved coupled spectral regression for heterogeneous face recognition</atitle><btitle>2012 5th IAPR International Conference on Biometrics (ICB)</btitle><stitle>ICB</stitle><date>2012-03</date><risdate>2012</risdate><spage>7</spage><epage>12</epage><pages>7-12</pages><issn>2376-4201</issn><isbn>9781467303965</isbn><isbn>1467303968</isbn><eisbn>9781467303972</eisbn><eisbn>9781467303958</eisbn><eisbn>1467303976</eisbn><eisbn>146730395X</eisbn><abstract>Coupled spectral regression (CSR) is an effective framework for heterogeneous face recognition (e.g., visual light (VIS) vs. near infrared (NIR)). CSR aims to learn different projections for different face modalities respectively to find a common subspace where the samples of different modalities from the same class are as close as possible. In original CSR, the projection for one modality is supposed to be represented by the data from the same modality. In this paper, we show that not only the samples of the same modality, but also all samples from different modalities are useful to learn the projection. Based on this assumption, we propose an improved coupled spectral regression (ICSR) approach which assumes the projections are linearly represented by all samples. Moreover, in order to improve the generalization capability, the locality information among samples is considered during the ICSR learning. Experiments on PIE, Multi-PIE and CASIA-HFB face database show that the proposed ICSR enhances the heterogeneous face recognition performance compared with the original CSR and validates the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/ICB.2012.6199751</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2376-4201 |
ispartof | 2012 5th IAPR International Conference on Biometrics (ICB), 2012, p.7-12 |
issn | 2376-4201 |
language | eng |
recordid | cdi_ieee_primary_6199751 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Face Face recognition Image resolution Kernel Probes Training |
title | An improved coupled spectral regression for heterogeneous face recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20coupled%20spectral%20regression%20for%20heterogeneous%20face%20recognition&rft.btitle=2012%205th%20IAPR%20International%20Conference%20on%20Biometrics%20(ICB)&rft.au=Zhen%20Lei&rft.date=2012-03&rft.spage=7&rft.epage=12&rft.pages=7-12&rft.issn=2376-4201&rft.isbn=9781467303965&rft.isbn_list=1467303968&rft_id=info:doi/10.1109/ICB.2012.6199751&rft_dat=%3Cieee_6IE%3E6199751%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303972&rft.eisbn_list=9781467303958&rft.eisbn_list=1467303976&rft.eisbn_list=146730395X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6199751&rfr_iscdi=true |