Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications

A low-power microelectromechanical-systems (MEMS) three-axis Lorentz-force magnetic sensor is presented. The sensor detects magnetic field in two axes with a single MEMS structure. Three-axis sensing is performed using two perpendicular structures on the same die. The MEMS device is a micromechanica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2012-08, Vol.21 (4), p.1002-1010
Hauptverfasser: Mo Li, Rouf, V. T., Thompson, M. J., Horsley, D. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1010
container_issue 4
container_start_page 1002
container_title Journal of microelectromechanical systems
container_volume 21
creator Mo Li
Rouf, V. T.
Thompson, M. J.
Horsley, D. A.
description A low-power microelectromechanical-systems (MEMS) three-axis Lorentz-force magnetic sensor is presented. The sensor detects magnetic field in two axes with a single MEMS structure. Three-axis sensing is performed using two perpendicular structures on the same die. The MEMS device is a micromechanical resonator, and sensing is conducted using excitation currents at the device's in-plane and out-of-plane mechanical resonant frequencies which are 20.55 and 46.96 kHz, respectively. A die-level vacuum seal results in in-plane and out-of-plane mechanical quality factors of 1400 and 10000, current, the sensor's noise is equivalent to 137 nT/√Hz for the respectively. With 0.58 mW used to provide the two-axis excitation z-axis magnetic field inputs and 444 nT/√Hz for the x-and y-axis fields. For the z-axis field measurements, Brownian noise is the dominant noise component, while the xand y-axis field measurements are limited by the electronic noise in the discrete capacitive-sensing electronics. The major source of offset error is residual motion induced by electrostatic force. The offset is reduced to 14 μT using a dc compensation voltage applied to the MEMS structure to null the electrostatic force. After compensation, the offset stability is 400 nT with a 0.7-s averaging time.
doi_str_mv 10.1109/JMEMS.2012.2196493
format Article
fullrecord <record><control><sourceid>pascalfrancis_RIE</sourceid><recordid>TN_cdi_ieee_primary_6198750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6198750</ieee_id><sourcerecordid>26195568</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-8628bd5e734473a84a81a8122d59e15919f40220d2f3b80baf422835f08ee9a03</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-DSC8eMOB9tcpymbYA6cdg4V1nmQFHXVkkPwK8nY9MkW7b8-rWsh5B7YBMAZp5eV_PVesIZ8AkHk0sjLsgIjATKQOnL1DNV0AJUcU1uYvxiDKTU-YiUm8-ASKffdczKLmA7_NJFFxxmK_vR4lC7bI1t7ELmU84bdEPo2jSddfvexphN-76pnR3qro235MrbJuLdqY7J-2K-mT3T8m35MpuW1IlcDFTnXG93CgshZSGsllZDCs53yiAoA8ZLxjnbcS-2mm2tl5xroTzTiMYyMSb8eNeFLsaAvupDvbfhpwJWHXhU_zyqA4_qxCOZHo-m9LazjQ-2dXU8O3kORqlcp72H416NiGc5qbpQTPwBDKBomg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Mo Li ; Rouf, V. T. ; Thompson, M. J. ; Horsley, D. A.</creator><creatorcontrib>Mo Li ; Rouf, V. T. ; Thompson, M. J. ; Horsley, D. A.</creatorcontrib><description>A low-power microelectromechanical-systems (MEMS) three-axis Lorentz-force magnetic sensor is presented. The sensor detects magnetic field in two axes with a single MEMS structure. Three-axis sensing is performed using two perpendicular structures on the same die. The MEMS device is a micromechanical resonator, and sensing is conducted using excitation currents at the device's in-plane and out-of-plane mechanical resonant frequencies which are 20.55 and 46.96 kHz, respectively. A die-level vacuum seal results in in-plane and out-of-plane mechanical quality factors of 1400 and 10000, current, the sensor's noise is equivalent to 137 nT/√Hz for the respectively. With 0.58 mW used to provide the two-axis excitation z-axis magnetic field inputs and 444 nT/√Hz for the x-and y-axis fields. For the z-axis field measurements, Brownian noise is the dominant noise component, while the xand y-axis field measurements are limited by the electronic noise in the discrete capacitive-sensing electronics. The major source of offset error is residual motion induced by electrostatic force. The offset is reduced to 14 μT using a dc compensation voltage applied to the MEMS structure to null the electrostatic force. After compensation, the offset stability is 400 nT with a 0.7-s averaging time.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2012.2196493</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Current measurement ; Exact sciences and technology ; Frequency measurement ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Magnetic sensors ; Magnetometers ; Mechanical instruments, equipment and techniques ; microelectromechanical devices ; Micromechanical devices ; Micromechanical devices and systems ; navigation ; Noise ; Physics ; Sensitivity ; Sensors</subject><ispartof>Journal of microelectromechanical systems, 2012-08, Vol.21 (4), p.1002-1010</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-8628bd5e734473a84a81a8122d59e15919f40220d2f3b80baf422835f08ee9a03</citedby><cites>FETCH-LOGICAL-c363t-8628bd5e734473a84a81a8122d59e15919f40220d2f3b80baf422835f08ee9a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6198750$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6198750$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26195568$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mo Li</creatorcontrib><creatorcontrib>Rouf, V. T.</creatorcontrib><creatorcontrib>Thompson, M. J.</creatorcontrib><creatorcontrib>Horsley, D. A.</creatorcontrib><title>Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>A low-power microelectromechanical-systems (MEMS) three-axis Lorentz-force magnetic sensor is presented. The sensor detects magnetic field in two axes with a single MEMS structure. Three-axis sensing is performed using two perpendicular structures on the same die. The MEMS device is a micromechanical resonator, and sensing is conducted using excitation currents at the device's in-plane and out-of-plane mechanical resonant frequencies which are 20.55 and 46.96 kHz, respectively. A die-level vacuum seal results in in-plane and out-of-plane mechanical quality factors of 1400 and 10000, current, the sensor's noise is equivalent to 137 nT/√Hz for the respectively. With 0.58 mW used to provide the two-axis excitation z-axis magnetic field inputs and 444 nT/√Hz for the x-and y-axis fields. For the z-axis field measurements, Brownian noise is the dominant noise component, while the xand y-axis field measurements are limited by the electronic noise in the discrete capacitive-sensing electronics. The major source of offset error is residual motion induced by electrostatic force. The offset is reduced to 14 μT using a dc compensation voltage applied to the MEMS structure to null the electrostatic force. After compensation, the offset stability is 400 nT with a 0.7-s averaging time.</description><subject>Current measurement</subject><subject>Exact sciences and technology</subject><subject>Frequency measurement</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Magnetic sensors</subject><subject>Magnetometers</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>microelectromechanical devices</subject><subject>Micromechanical devices</subject><subject>Micromechanical devices and systems</subject><subject>navigation</subject><subject>Noise</subject><subject>Physics</subject><subject>Sensitivity</subject><subject>Sensors</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwB-DSC8eMOB9tcpymbYA6cdg4V1nmQFHXVkkPwK8nY9MkW7b8-rWsh5B7YBMAZp5eV_PVesIZ8AkHk0sjLsgIjATKQOnL1DNV0AJUcU1uYvxiDKTU-YiUm8-ASKffdczKLmA7_NJFFxxmK_vR4lC7bI1t7ELmU84bdEPo2jSddfvexphN-76pnR3qro235MrbJuLdqY7J-2K-mT3T8m35MpuW1IlcDFTnXG93CgshZSGsllZDCs53yiAoA8ZLxjnbcS-2mm2tl5xroTzTiMYyMSb8eNeFLsaAvupDvbfhpwJWHXhU_zyqA4_qxCOZHo-m9LazjQ-2dXU8O3kORqlcp72H416NiGc5qbpQTPwBDKBomg</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Mo Li</creator><creator>Rouf, V. T.</creator><creator>Thompson, M. J.</creator><creator>Horsley, D. A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120801</creationdate><title>Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications</title><author>Mo Li ; Rouf, V. T. ; Thompson, M. J. ; Horsley, D. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-8628bd5e734473a84a81a8122d59e15919f40220d2f3b80baf422835f08ee9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Current measurement</topic><topic>Exact sciences and technology</topic><topic>Frequency measurement</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Magnetic sensors</topic><topic>Magnetometers</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>microelectromechanical devices</topic><topic>Micromechanical devices</topic><topic>Micromechanical devices and systems</topic><topic>navigation</topic><topic>Noise</topic><topic>Physics</topic><topic>Sensitivity</topic><topic>Sensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mo Li</creatorcontrib><creatorcontrib>Rouf, V. T.</creatorcontrib><creatorcontrib>Thompson, M. J.</creatorcontrib><creatorcontrib>Horsley, D. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mo Li</au><au>Rouf, V. T.</au><au>Thompson, M. J.</au><au>Horsley, D. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2012-08-01</date><risdate>2012</risdate><volume>21</volume><issue>4</issue><spage>1002</spage><epage>1010</epage><pages>1002-1010</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>A low-power microelectromechanical-systems (MEMS) three-axis Lorentz-force magnetic sensor is presented. The sensor detects magnetic field in two axes with a single MEMS structure. Three-axis sensing is performed using two perpendicular structures on the same die. The MEMS device is a micromechanical resonator, and sensing is conducted using excitation currents at the device's in-plane and out-of-plane mechanical resonant frequencies which are 20.55 and 46.96 kHz, respectively. A die-level vacuum seal results in in-plane and out-of-plane mechanical quality factors of 1400 and 10000, current, the sensor's noise is equivalent to 137 nT/√Hz for the respectively. With 0.58 mW used to provide the two-axis excitation z-axis magnetic field inputs and 444 nT/√Hz for the x-and y-axis fields. For the z-axis field measurements, Brownian noise is the dominant noise component, while the xand y-axis field measurements are limited by the electronic noise in the discrete capacitive-sensing electronics. The major source of offset error is residual motion induced by electrostatic force. The offset is reduced to 14 μT using a dc compensation voltage applied to the MEMS structure to null the electrostatic force. After compensation, the offset stability is 400 nT with a 0.7-s averaging time.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2012.2196493</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2012-08, Vol.21 (4), p.1002-1010
issn 1057-7157
1941-0158
language eng
recordid cdi_ieee_primary_6198750
source IEEE Electronic Library (IEL)
subjects Current measurement
Exact sciences and technology
Frequency measurement
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Magnetic sensors
Magnetometers
Mechanical instruments, equipment and techniques
microelectromechanical devices
Micromechanical devices
Micromechanical devices and systems
navigation
Noise
Physics
Sensitivity
Sensors
title Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A30%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Axis%20Lorentz-Force%20Magnetic%20Sensor%20for%20Electronic%20Compass%20Applications&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Mo%20Li&rft.date=2012-08-01&rft.volume=21&rft.issue=4&rft.spage=1002&rft.epage=1010&rft.pages=1002-1010&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2012.2196493&rft_dat=%3Cpascalfrancis_RIE%3E26195568%3C/pascalfrancis_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6198750&rfr_iscdi=true