Distributed graph query processing in dynamic networks
In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environment...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | |
container_start_page | 20 |
container_title | |
container_volume | |
creator | Srivatsa, M. Kawadia, V. Shengqi Yang |
description | In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation. |
doi_str_mv | 10.1109/PerComW.2012.6197481 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6197481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6197481</ieee_id><sourcerecordid>6197481</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e65a938c1e7b5124109497356fbff32bd3478ec319b4ae114fbba2c193cb06df3</originalsourceid><addsrcrecordid>eNo1j81KAzEUhSMiqHWeQBd5gRlzk0wyWcqoVSjoouCyJJmbGnV-TKZI396C9WwO3-bwHUJugFUAzNy-YmrH_q3iDHilwGjZwAkpjG5AKi2YYVqckst_qPk5KXL-YIdoJpSsL4i6j3lO0e1m7Og22emdfu8w7emURo85x2FL40C7_WD76OmA88-YPvMVOQv2K2Nx7AVZPz6s26dy9bJ8bu9WZTRsLlHV1ojGA2pXA5cHZ2m0qFVwIQjuOiF1g16AcdIigAzOWe7BCO-Y6oJYkOu_2YiImynF3qb95vhU_AL2Zkiu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Distributed graph query processing in dynamic networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Srivatsa, M. ; Kawadia, V. ; Shengqi Yang</creator><creatorcontrib>Srivatsa, M. ; Kawadia, V. ; Shengqi Yang</creatorcontrib><description>In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation.</description><identifier>ISBN: 1467309052</identifier><identifier>ISBN: 9781467309059</identifier><identifier>EISBN: 9781467309073</identifier><identifier>EISBN: 1467309060</identifier><identifier>EISBN: 1467309079</identifier><identifier>EISBN: 9781467309066</identifier><identifier>DOI: 10.1109/PerComW.2012.6197481</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Availability ; Communication networks ; Computational modeling ; Heuristic algorithms ; Peer to peer computing ; Query processing</subject><ispartof>2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, p.20-25</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6197481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6197481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Srivatsa, M.</creatorcontrib><creatorcontrib>Kawadia, V.</creatorcontrib><creatorcontrib>Shengqi Yang</creatorcontrib><title>Distributed graph query processing in dynamic networks</title><title>2012 IEEE International Conference on Pervasive Computing and Communications Workshops</title><addtitle>PerComW</addtitle><description>In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation.</description><subject>Algorithm design and analysis</subject><subject>Availability</subject><subject>Communication networks</subject><subject>Computational modeling</subject><subject>Heuristic algorithms</subject><subject>Peer to peer computing</subject><subject>Query processing</subject><isbn>1467309052</isbn><isbn>9781467309059</isbn><isbn>9781467309073</isbn><isbn>1467309060</isbn><isbn>1467309079</isbn><isbn>9781467309066</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KAzEUhSMiqHWeQBd5gRlzk0wyWcqoVSjoouCyJJmbGnV-TKZI396C9WwO3-bwHUJugFUAzNy-YmrH_q3iDHilwGjZwAkpjG5AKi2YYVqckst_qPk5KXL-YIdoJpSsL4i6j3lO0e1m7Og22emdfu8w7emURo85x2FL40C7_WD76OmA88-YPvMVOQv2K2Nx7AVZPz6s26dy9bJ8bu9WZTRsLlHV1ojGA2pXA5cHZ2m0qFVwIQjuOiF1g16AcdIigAzOWe7BCO-Y6oJYkOu_2YiImynF3qb95vhU_AL2Zkiu</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Srivatsa, M.</creator><creator>Kawadia, V.</creator><creator>Shengqi Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Distributed graph query processing in dynamic networks</title><author>Srivatsa, M. ; Kawadia, V. ; Shengqi Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e65a938c1e7b5124109497356fbff32bd3478ec319b4ae114fbba2c193cb06df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Availability</topic><topic>Communication networks</topic><topic>Computational modeling</topic><topic>Heuristic algorithms</topic><topic>Peer to peer computing</topic><topic>Query processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Srivatsa, M.</creatorcontrib><creatorcontrib>Kawadia, V.</creatorcontrib><creatorcontrib>Shengqi Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Srivatsa, M.</au><au>Kawadia, V.</au><au>Shengqi Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distributed graph query processing in dynamic networks</atitle><btitle>2012 IEEE International Conference on Pervasive Computing and Communications Workshops</btitle><stitle>PerComW</stitle><date>2012-03</date><risdate>2012</risdate><spage>20</spage><epage>25</epage><pages>20-25</pages><isbn>1467309052</isbn><isbn>9781467309059</isbn><eisbn>9781467309073</eisbn><eisbn>1467309060</eisbn><eisbn>1467309079</eisbn><eisbn>9781467309066</eisbn><abstract>In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation.</abstract><pub>IEEE</pub><doi>10.1109/PerComW.2012.6197481</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1467309052 |
ispartof | 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, p.20-25 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6197481 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Availability Communication networks Computational modeling Heuristic algorithms Peer to peer computing Query processing |
title | Distributed graph query processing in dynamic networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distributed%20graph%20query%20processing%20in%20dynamic%20networks&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Pervasive%20Computing%20and%20Communications%20Workshops&rft.au=Srivatsa,%20M.&rft.date=2012-03&rft.spage=20&rft.epage=25&rft.pages=20-25&rft.isbn=1467309052&rft.isbn_list=9781467309059&rft_id=info:doi/10.1109/PerComW.2012.6197481&rft_dat=%3Cieee_6IE%3E6197481%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467309073&rft.eisbn_list=1467309060&rft.eisbn_list=1467309079&rft.eisbn_list=9781467309066&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6197481&rfr_iscdi=true |