Distributed graph query processing in dynamic networks

In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Srivatsa, M., Kawadia, V., Shengqi Yang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue
container_start_page 20
container_title
container_volume
creator Srivatsa, M.
Kawadia, V.
Shengqi Yang
description In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation.
doi_str_mv 10.1109/PerComW.2012.6197481
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6197481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6197481</ieee_id><sourcerecordid>6197481</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e65a938c1e7b5124109497356fbff32bd3478ec319b4ae114fbba2c193cb06df3</originalsourceid><addsrcrecordid>eNo1j81KAzEUhSMiqHWeQBd5gRlzk0wyWcqoVSjoouCyJJmbGnV-TKZI396C9WwO3-bwHUJugFUAzNy-YmrH_q3iDHilwGjZwAkpjG5AKi2YYVqckst_qPk5KXL-YIdoJpSsL4i6j3lO0e1m7Og22emdfu8w7emURo85x2FL40C7_WD76OmA88-YPvMVOQv2K2Nx7AVZPz6s26dy9bJ8bu9WZTRsLlHV1ojGA2pXA5cHZ2m0qFVwIQjuOiF1g16AcdIigAzOWe7BCO-Y6oJYkOu_2YiImynF3qb95vhU_AL2Zkiu</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Distributed graph query processing in dynamic networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Srivatsa, M. ; Kawadia, V. ; Shengqi Yang</creator><creatorcontrib>Srivatsa, M. ; Kawadia, V. ; Shengqi Yang</creatorcontrib><description>In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation.</description><identifier>ISBN: 1467309052</identifier><identifier>ISBN: 9781467309059</identifier><identifier>EISBN: 9781467309073</identifier><identifier>EISBN: 1467309060</identifier><identifier>EISBN: 1467309079</identifier><identifier>EISBN: 9781467309066</identifier><identifier>DOI: 10.1109/PerComW.2012.6197481</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Availability ; Communication networks ; Computational modeling ; Heuristic algorithms ; Peer to peer computing ; Query processing</subject><ispartof>2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, p.20-25</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6197481$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6197481$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Srivatsa, M.</creatorcontrib><creatorcontrib>Kawadia, V.</creatorcontrib><creatorcontrib>Shengqi Yang</creatorcontrib><title>Distributed graph query processing in dynamic networks</title><title>2012 IEEE International Conference on Pervasive Computing and Communications Workshops</title><addtitle>PerComW</addtitle><description>In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation.</description><subject>Algorithm design and analysis</subject><subject>Availability</subject><subject>Communication networks</subject><subject>Computational modeling</subject><subject>Heuristic algorithms</subject><subject>Peer to peer computing</subject><subject>Query processing</subject><isbn>1467309052</isbn><isbn>9781467309059</isbn><isbn>9781467309073</isbn><isbn>1467309060</isbn><isbn>1467309079</isbn><isbn>9781467309066</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81KAzEUhSMiqHWeQBd5gRlzk0wyWcqoVSjoouCyJJmbGnV-TKZI396C9WwO3-bwHUJugFUAzNy-YmrH_q3iDHilwGjZwAkpjG5AKi2YYVqckst_qPk5KXL-YIdoJpSsL4i6j3lO0e1m7Og22emdfu8w7emURo85x2FL40C7_WD76OmA88-YPvMVOQv2K2Nx7AVZPz6s26dy9bJ8bu9WZTRsLlHV1ojGA2pXA5cHZ2m0qFVwIQjuOiF1g16AcdIigAzOWe7BCO-Y6oJYkOu_2YiImynF3qb95vhU_AL2Zkiu</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Srivatsa, M.</creator><creator>Kawadia, V.</creator><creator>Shengqi Yang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Distributed graph query processing in dynamic networks</title><author>Srivatsa, M. ; Kawadia, V. ; Shengqi Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e65a938c1e7b5124109497356fbff32bd3478ec319b4ae114fbba2c193cb06df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithm design and analysis</topic><topic>Availability</topic><topic>Communication networks</topic><topic>Computational modeling</topic><topic>Heuristic algorithms</topic><topic>Peer to peer computing</topic><topic>Query processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Srivatsa, M.</creatorcontrib><creatorcontrib>Kawadia, V.</creatorcontrib><creatorcontrib>Shengqi Yang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Srivatsa, M.</au><au>Kawadia, V.</au><au>Shengqi Yang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Distributed graph query processing in dynamic networks</atitle><btitle>2012 IEEE International Conference on Pervasive Computing and Communications Workshops</btitle><stitle>PerComW</stitle><date>2012-03</date><risdate>2012</risdate><spage>20</spage><epage>25</epage><pages>20-25</pages><isbn>1467309052</isbn><isbn>9781467309059</isbn><eisbn>9781467309073</eisbn><eisbn>1467309060</eisbn><eisbn>1467309079</eisbn><eisbn>9781467309066</eisbn><abstract>In this paper we examine a popular network computational model (BSP: Bulk Synchronous Parallel) that has been adopted by the Google Pregel system to support large scale graph processing. We show that the synchronicity assumption made by the BSP model, while acceptable in data center like environments with strong and persistent network connectivity, can result in severe performance penalties in the context of dynamic networks. We introduce a new computational model (BAP: Bulk Asynchronous Parallel) that preserves the bulk and parallel nature of the BSP model but extends the model to asynchronous network communication. We consider two popular classes of graph queries (random walk queries and shortest path queries), present both BSP and BAP algorithms for these queries and evaluate their performance using realistic graphs datasets (DBLP and Flickr) and dynamic network datasets (Infocom06 and MIT Reality dataset). Our initial results show that in dynamic networks BAP algorithms can achieve several orders of magnitude in improvement for various QoI metrics such as accuracy and latency of (partial and complete) query evaluation.</abstract><pub>IEEE</pub><doi>10.1109/PerComW.2012.6197481</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467309052
ispartof 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, 2012, p.20-25
issn
language eng
recordid cdi_ieee_primary_6197481
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Availability
Communication networks
Computational modeling
Heuristic algorithms
Peer to peer computing
Query processing
title Distributed graph query processing in dynamic networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A54%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Distributed%20graph%20query%20processing%20in%20dynamic%20networks&rft.btitle=2012%20IEEE%20International%20Conference%20on%20Pervasive%20Computing%20and%20Communications%20Workshops&rft.au=Srivatsa,%20M.&rft.date=2012-03&rft.spage=20&rft.epage=25&rft.pages=20-25&rft.isbn=1467309052&rft.isbn_list=9781467309059&rft_id=info:doi/10.1109/PerComW.2012.6197481&rft_dat=%3Cieee_6IE%3E6197481%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467309073&rft.eisbn_list=1467309060&rft.eisbn_list=1467309079&rft.eisbn_list=9781467309066&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6197481&rfr_iscdi=true