A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors
Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Seung Ho Cho Phillips, W. D. Sankar, R. Bonghee Moon |
description | Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom. |
doi_str_mv | 10.1109/SECon.2012.6196964 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6196964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6196964</ieee_id><sourcerecordid>6196964</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65e400797881424085bfa2753f60012409da2abe5624377332aabe3f8fe361f93</originalsourceid><addsrcrecordid>eNpVkEtrQjEQhdMXVKx_oN3kD1ybx01ysxSxDxC6aAvdyVydaIoml-RqaX99I3XT2QxzDhzON4TccjbmnNn719k0hrFgXIw1t9rq-oyMrGl4rY3k0kh1TgZcqaZiqvm4-OfV4rJ4zPKKMcWuySjnT1bGMGmVHJD1hOYeeqRdwozp4MOaQtelCMsN7SNNuIzr4H-O-ma_g0Bb3MDBx0T3-Sh--YRbzJn64BIkXFEIK3rwbYLex0AzhhxTviFXDrYZR6c9JO8Ps7fpUzV_eXyeTuaV50b1lVZYl3IFoBCImjWqdSCMkk6zwl8zuwIBLSotammMlALKJV3jUGrurBySu79cj4iLLvkdpO_F6W3yFxTBXc4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seung Ho Cho ; Phillips, W. D. ; Sankar, R. ; Bonghee Moon</creator><creatorcontrib>Seung Ho Cho ; Phillips, W. D. ; Sankar, R. ; Bonghee Moon</creatorcontrib><description>Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom.</description><identifier>ISSN: 1091-0050</identifier><identifier>ISBN: 9781467313742</identifier><identifier>ISBN: 1467313742</identifier><identifier>EISSN: 1558-058X</identifier><identifier>EISBN: 9781467313735</identifier><identifier>EISBN: 1467313734</identifier><identifier>EISBN: 1467313750</identifier><identifier>EISBN: 9781467313759</identifier><identifier>DOI: 10.1109/SECon.2012.6196964</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; feature vector ; home monitoring ; human behavior recognition ; Humans ; Sensors ; state preserving approach ; Vectors ; Vibrations ; Wireless communication ; Wireless sensor networks</subject><ispartof>2012 Proceedings of IEEE Southeastcon, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6196964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6196964$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung Ho Cho</creatorcontrib><creatorcontrib>Phillips, W. D.</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Bonghee Moon</creatorcontrib><title>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</title><title>2012 Proceedings of IEEE Southeastcon</title><addtitle>SECon</addtitle><description>Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom.</description><subject>Feature extraction</subject><subject>feature vector</subject><subject>home monitoring</subject><subject>human behavior recognition</subject><subject>Humans</subject><subject>Sensors</subject><subject>state preserving approach</subject><subject>Vectors</subject><subject>Vibrations</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1091-0050</issn><issn>1558-058X</issn><isbn>9781467313742</isbn><isbn>1467313742</isbn><isbn>9781467313735</isbn><isbn>1467313734</isbn><isbn>1467313750</isbn><isbn>9781467313759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtrQjEQhdMXVKx_oN3kD1ybx01ysxSxDxC6aAvdyVydaIoml-RqaX99I3XT2QxzDhzON4TccjbmnNn719k0hrFgXIw1t9rq-oyMrGl4rY3k0kh1TgZcqaZiqvm4-OfV4rJ4zPKKMcWuySjnT1bGMGmVHJD1hOYeeqRdwozp4MOaQtelCMsN7SNNuIzr4H-O-ma_g0Bb3MDBx0T3-Sh--YRbzJn64BIkXFEIK3rwbYLex0AzhhxTviFXDrYZR6c9JO8Ps7fpUzV_eXyeTuaV50b1lVZYl3IFoBCImjWqdSCMkk6zwl8zuwIBLSotammMlALKJV3jUGrurBySu79cj4iLLvkdpO_F6W3yFxTBXc4</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Seung Ho Cho</creator><creator>Phillips, W. D.</creator><creator>Sankar, R.</creator><creator>Bonghee Moon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</title><author>Seung Ho Cho ; Phillips, W. D. ; Sankar, R. ; Bonghee Moon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65e400797881424085bfa2753f60012409da2abe5624377332aabe3f8fe361f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Feature extraction</topic><topic>feature vector</topic><topic>home monitoring</topic><topic>human behavior recognition</topic><topic>Humans</topic><topic>Sensors</topic><topic>state preserving approach</topic><topic>Vectors</topic><topic>Vibrations</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Seung Ho Cho</creatorcontrib><creatorcontrib>Phillips, W. D.</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Bonghee Moon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung Ho Cho</au><au>Phillips, W. D.</au><au>Sankar, R.</au><au>Bonghee Moon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</atitle><btitle>2012 Proceedings of IEEE Southeastcon</btitle><stitle>SECon</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1091-0050</issn><eissn>1558-058X</eissn><isbn>9781467313742</isbn><isbn>1467313742</isbn><eisbn>9781467313735</eisbn><eisbn>1467313734</eisbn><eisbn>1467313750</eisbn><eisbn>9781467313759</eisbn><abstract>Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom.</abstract><pub>IEEE</pub><doi>10.1109/SECon.2012.6196964</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1091-0050 |
ispartof | 2012 Proceedings of IEEE Southeastcon, 2012, p.1-6 |
issn | 1091-0050 1558-058X |
language | eng |
recordid | cdi_ieee_primary_6196964 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Feature extraction feature vector home monitoring human behavior recognition Humans Sensors state preserving approach Vectors Vibrations Wireless communication Wireless sensor networks |
title | A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20state%20preserving%20approach%20to%20recognizing%20human%20behavior%20using%20wireless%20infrared%20and%20vibration%20sensors&rft.btitle=2012%20Proceedings%20of%20IEEE%20Southeastcon&rft.au=Seung%20Ho%20Cho&rft.date=2012-03&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1091-0050&rft.eissn=1558-058X&rft.isbn=9781467313742&rft.isbn_list=1467313742&rft_id=info:doi/10.1109/SECon.2012.6196964&rft_dat=%3Cieee_6IE%3E6196964%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467313735&rft.eisbn_list=1467313734&rft.eisbn_list=1467313750&rft.eisbn_list=9781467313759&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6196964&rfr_iscdi=true |