A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors

Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seung Ho Cho, Phillips, W. D., Sankar, R., Bonghee Moon
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Seung Ho Cho
Phillips, W. D.
Sankar, R.
Bonghee Moon
description Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom.
doi_str_mv 10.1109/SECon.2012.6196964
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6196964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6196964</ieee_id><sourcerecordid>6196964</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-65e400797881424085bfa2753f60012409da2abe5624377332aabe3f8fe361f93</originalsourceid><addsrcrecordid>eNpVkEtrQjEQhdMXVKx_oN3kD1ybx01ysxSxDxC6aAvdyVydaIoml-RqaX99I3XT2QxzDhzON4TccjbmnNn719k0hrFgXIw1t9rq-oyMrGl4rY3k0kh1TgZcqaZiqvm4-OfV4rJ4zPKKMcWuySjnT1bGMGmVHJD1hOYeeqRdwozp4MOaQtelCMsN7SNNuIzr4H-O-ma_g0Bb3MDBx0T3-Sh--YRbzJn64BIkXFEIK3rwbYLex0AzhhxTviFXDrYZR6c9JO8Ps7fpUzV_eXyeTuaV50b1lVZYl3IFoBCImjWqdSCMkk6zwl8zuwIBLSotammMlALKJV3jUGrurBySu79cj4iLLvkdpO_F6W3yFxTBXc4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seung Ho Cho ; Phillips, W. D. ; Sankar, R. ; Bonghee Moon</creator><creatorcontrib>Seung Ho Cho ; Phillips, W. D. ; Sankar, R. ; Bonghee Moon</creatorcontrib><description>Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom.</description><identifier>ISSN: 1091-0050</identifier><identifier>ISBN: 9781467313742</identifier><identifier>ISBN: 1467313742</identifier><identifier>EISSN: 1558-058X</identifier><identifier>EISBN: 9781467313735</identifier><identifier>EISBN: 1467313734</identifier><identifier>EISBN: 1467313750</identifier><identifier>EISBN: 9781467313759</identifier><identifier>DOI: 10.1109/SECon.2012.6196964</identifier><language>eng</language><publisher>IEEE</publisher><subject>Feature extraction ; feature vector ; home monitoring ; human behavior recognition ; Humans ; Sensors ; state preserving approach ; Vectors ; Vibrations ; Wireless communication ; Wireless sensor networks</subject><ispartof>2012 Proceedings of IEEE Southeastcon, 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6196964$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6196964$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seung Ho Cho</creatorcontrib><creatorcontrib>Phillips, W. D.</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Bonghee Moon</creatorcontrib><title>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</title><title>2012 Proceedings of IEEE Southeastcon</title><addtitle>SECon</addtitle><description>Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom.</description><subject>Feature extraction</subject><subject>feature vector</subject><subject>home monitoring</subject><subject>human behavior recognition</subject><subject>Humans</subject><subject>Sensors</subject><subject>state preserving approach</subject><subject>Vectors</subject><subject>Vibrations</subject><subject>Wireless communication</subject><subject>Wireless sensor networks</subject><issn>1091-0050</issn><issn>1558-058X</issn><isbn>9781467313742</isbn><isbn>1467313742</isbn><isbn>9781467313735</isbn><isbn>1467313734</isbn><isbn>1467313750</isbn><isbn>9781467313759</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEtrQjEQhdMXVKx_oN3kD1ybx01ysxSxDxC6aAvdyVydaIoml-RqaX99I3XT2QxzDhzON4TccjbmnNn719k0hrFgXIw1t9rq-oyMrGl4rY3k0kh1TgZcqaZiqvm4-OfV4rJ4zPKKMcWuySjnT1bGMGmVHJD1hOYeeqRdwozp4MOaQtelCMsN7SNNuIzr4H-O-ma_g0Bb3MDBx0T3-Sh--YRbzJn64BIkXFEIK3rwbYLex0AzhhxTviFXDrYZR6c9JO8Ps7fpUzV_eXyeTuaV50b1lVZYl3IFoBCImjWqdSCMkk6zwl8zuwIBLSotammMlALKJV3jUGrurBySu79cj4iLLvkdpO_F6W3yFxTBXc4</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Seung Ho Cho</creator><creator>Phillips, W. D.</creator><creator>Sankar, R.</creator><creator>Bonghee Moon</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</title><author>Seung Ho Cho ; Phillips, W. D. ; Sankar, R. ; Bonghee Moon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-65e400797881424085bfa2753f60012409da2abe5624377332aabe3f8fe361f93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Feature extraction</topic><topic>feature vector</topic><topic>home monitoring</topic><topic>human behavior recognition</topic><topic>Humans</topic><topic>Sensors</topic><topic>state preserving approach</topic><topic>Vectors</topic><topic>Vibrations</topic><topic>Wireless communication</topic><topic>Wireless sensor networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Seung Ho Cho</creatorcontrib><creatorcontrib>Phillips, W. D.</creatorcontrib><creatorcontrib>Sankar, R.</creatorcontrib><creatorcontrib>Bonghee Moon</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seung Ho Cho</au><au>Phillips, W. D.</au><au>Sankar, R.</au><au>Bonghee Moon</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors</atitle><btitle>2012 Proceedings of IEEE Southeastcon</btitle><stitle>SECon</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1091-0050</issn><eissn>1558-058X</eissn><isbn>9781467313742</isbn><isbn>1467313742</isbn><eisbn>9781467313735</eisbn><eisbn>1467313734</eisbn><eisbn>1467313750</eisbn><eisbn>9781467313759</eisbn><abstract>Some home monitoring research has tried to deal with a broad range of human behaviors such Activity of Daily Living (ADL) or Instrumented ADL (IADL) in an entire home, but most research results does not yet seem satisfactory. So we focused on modeling human behaviors in a bedroom, not an entire home. To do this, we define a behavior state and behaviors. We constructed the experimental system by installing a wireless infrared sensor on the ceiling above vibration sensors located on a bed. Based on the behavior definition, we formed a feature vector for each behavior in a bedroom. The total 110 experiments on five behaviors were tested by 5 subjects. We achieved a recognition ratio of 75.4%. After analyzing causes of false negatives, we revised some features. Then, the total 115 experiments were tested by four additional subjects. The recognition ratio improved to 94.8%. The high recognition ratio indicates that the proposed behavior model is effective in recognizing human behaviors in a bedroom. This research will contribute to forming a foundation to track human behavioral log in a bedroom.</abstract><pub>IEEE</pub><doi>10.1109/SECon.2012.6196964</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1091-0050
ispartof 2012 Proceedings of IEEE Southeastcon, 2012, p.1-6
issn 1091-0050
1558-058X
language eng
recordid cdi_ieee_primary_6196964
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Feature extraction
feature vector
home monitoring
human behavior recognition
Humans
Sensors
state preserving approach
Vectors
Vibrations
Wireless communication
Wireless sensor networks
title A state preserving approach to recognizing human behavior using wireless infrared and vibration sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20state%20preserving%20approach%20to%20recognizing%20human%20behavior%20using%20wireless%20infrared%20and%20vibration%20sensors&rft.btitle=2012%20Proceedings%20of%20IEEE%20Southeastcon&rft.au=Seung%20Ho%20Cho&rft.date=2012-03&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1091-0050&rft.eissn=1558-058X&rft.isbn=9781467313742&rft.isbn_list=1467313742&rft_id=info:doi/10.1109/SECon.2012.6196964&rft_dat=%3Cieee_6IE%3E6196964%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467313735&rft.eisbn_list=1467313734&rft.eisbn_list=1467313750&rft.eisbn_list=9781467313759&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6196964&rfr_iscdi=true