Improved iterative soft-reliability-based majority-logic decoding algorithm for non-binary low-density parity-check codes

Non-binary low-density parity-check (LDPC) codes have some advantages as opposed to their binary counterparts, but unfortunately their decoding complexity is a significant challenge. Hence, the iterative soft-reliability-based (ISRB) majority-logic decoding algorithm is attractive for non-binary LDP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chenrong Xiong, Zhiyuan Yan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue
container_start_page 894
container_title
container_volume
creator Chenrong Xiong
Zhiyuan Yan
description Non-binary low-density parity-check (LDPC) codes have some advantages as opposed to their binary counterparts, but unfortunately their decoding complexity is a significant challenge. Hence, the iterative soft-reliability-based (ISRB) majority-logic decoding algorithm is attractive for non-binary LDPC codes, since it involves only finite field additions and multiplications as well as integer additions and comparisons. In this paper, we propose an improved ISRB majority-logic decoding algorithm by using a new reliability update. Our improved algorithm achieves better error performance and faster convergence, while further reducing the computational complexity. For instance, for a (16, 16)-regular (255, 175) cyclic Euclidean geometry LDPC code over GF(2 8 ), the proposed algorithm achieves a 0.15 dB coding gain and improves the convergence speed by 10% at a block error rate of 10 -4 versus the ISRB majority-logic decoding algorithm. Compared with the ISRB majority-logic decoding algorithm, the proposed algorithm requires the same numbers of finite field additions and multiplications but fewer integer additions and comparisons. Furthermore, the ISRB majority-logic decoding algorithm is based on the accumulation of reliability information, and hence the numerical range of the reliability information increases with iterations. In contrast, the proposed reliability update has a fixed numerical range and thus simplifies hardware implementations.
doi_str_mv 10.1109/ACSSC.2011.6190138
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6190138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6190138</ieee_id><sourcerecordid>6190138</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-a3ccdb38ae9920ee760ae4adfae8202550cb62c25500aeef83f92080be1f40163</originalsourceid><addsrcrecordid>eNpVUMlOwzAQNZtEVfoDcPEPuHhJbOdYRSyVKnEonCvHGbcuSVzZUVH_Hhe4MJeZN2_RaBC6Z3TOGK0eF_V6Xc85ZWwuWUWZ0BdoVinNCqkEFZwXl2jCSyUJz_DqH8fUNZowWmoiRSVu0SylPc2lqNBSTdBp2R9iOEKL_QjRjP4IOAU3kgidN43v_HgijUlZ0Jt9iGfYha23uAUbWj9ssem25_2uxy5EPISBNH4w8YS78EVaGFL24IP5sdod2E-cjZDu0I0zXYLZX5-ij-en9_qVrN5elvViRTxT5UiMsLZthDZQVZwCKEkNFKZ1BjSnvCypbSS35yET4LRwWadpA8wVlEkxRQ-_uR4ANofo-3zb5u-R4hsvzGXI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved iterative soft-reliability-based majority-logic decoding algorithm for non-binary low-density parity-check codes</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Chenrong Xiong ; Zhiyuan Yan</creator><creatorcontrib>Chenrong Xiong ; Zhiyuan Yan</creatorcontrib><description>Non-binary low-density parity-check (LDPC) codes have some advantages as opposed to their binary counterparts, but unfortunately their decoding complexity is a significant challenge. Hence, the iterative soft-reliability-based (ISRB) majority-logic decoding algorithm is attractive for non-binary LDPC codes, since it involves only finite field additions and multiplications as well as integer additions and comparisons. In this paper, we propose an improved ISRB majority-logic decoding algorithm by using a new reliability update. Our improved algorithm achieves better error performance and faster convergence, while further reducing the computational complexity. For instance, for a (16, 16)-regular (255, 175) cyclic Euclidean geometry LDPC code over GF(2 8 ), the proposed algorithm achieves a 0.15 dB coding gain and improves the convergence speed by 10% at a block error rate of 10 -4 versus the ISRB majority-logic decoding algorithm. Compared with the ISRB majority-logic decoding algorithm, the proposed algorithm requires the same numbers of finite field additions and multiplications but fewer integer additions and comparisons. Furthermore, the ISRB majority-logic decoding algorithm is based on the accumulation of reliability information, and hence the numerical range of the reliability information increases with iterations. In contrast, the proposed reliability update has a fixed numerical range and thus simplifies hardware implementations.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9781467303217</identifier><identifier>ISBN: 1467303216</identifier><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 9781467303224</identifier><identifier>EISBN: 1467303232</identifier><identifier>EISBN: 9781467303231</identifier><identifier>EISBN: 1467303224</identifier><identifier>DOI: 10.1109/ACSSC.2011.6190138</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; Convergence ; Decoding ; Error analysis ; Iterative decoding ; Reliability</subject><ispartof>2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011, p.894-898</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6190138$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6190138$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chenrong Xiong</creatorcontrib><creatorcontrib>Zhiyuan Yan</creatorcontrib><title>Improved iterative soft-reliability-based majority-logic decoding algorithm for non-binary low-density parity-check codes</title><title>2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</title><addtitle>ACSSC</addtitle><description>Non-binary low-density parity-check (LDPC) codes have some advantages as opposed to their binary counterparts, but unfortunately their decoding complexity is a significant challenge. Hence, the iterative soft-reliability-based (ISRB) majority-logic decoding algorithm is attractive for non-binary LDPC codes, since it involves only finite field additions and multiplications as well as integer additions and comparisons. In this paper, we propose an improved ISRB majority-logic decoding algorithm by using a new reliability update. Our improved algorithm achieves better error performance and faster convergence, while further reducing the computational complexity. For instance, for a (16, 16)-regular (255, 175) cyclic Euclidean geometry LDPC code over GF(2 8 ), the proposed algorithm achieves a 0.15 dB coding gain and improves the convergence speed by 10% at a block error rate of 10 -4 versus the ISRB majority-logic decoding algorithm. Compared with the ISRB majority-logic decoding algorithm, the proposed algorithm requires the same numbers of finite field additions and multiplications but fewer integer additions and comparisons. Furthermore, the ISRB majority-logic decoding algorithm is based on the accumulation of reliability information, and hence the numerical range of the reliability information increases with iterations. In contrast, the proposed reliability update has a fixed numerical range and thus simplifies hardware implementations.</description><subject>Complexity theory</subject><subject>Convergence</subject><subject>Decoding</subject><subject>Error analysis</subject><subject>Iterative decoding</subject><subject>Reliability</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9781467303217</isbn><isbn>1467303216</isbn><isbn>9781467303224</isbn><isbn>1467303232</isbn><isbn>9781467303231</isbn><isbn>1467303224</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUMlOwzAQNZtEVfoDcPEPuHhJbOdYRSyVKnEonCvHGbcuSVzZUVH_Hhe4MJeZN2_RaBC6Z3TOGK0eF_V6Xc85ZWwuWUWZ0BdoVinNCqkEFZwXl2jCSyUJz_DqH8fUNZowWmoiRSVu0SylPc2lqNBSTdBp2R9iOEKL_QjRjP4IOAU3kgidN43v_HgijUlZ0Jt9iGfYha23uAUbWj9ssem25_2uxy5EPISBNH4w8YS78EVaGFL24IP5sdod2E-cjZDu0I0zXYLZX5-ij-en9_qVrN5elvViRTxT5UiMsLZthDZQVZwCKEkNFKZ1BjSnvCypbSS35yET4LRwWadpA8wVlEkxRQ-_uR4ANofo-3zb5u-R4hsvzGXI</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Chenrong Xiong</creator><creator>Zhiyuan Yan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201111</creationdate><title>Improved iterative soft-reliability-based majority-logic decoding algorithm for non-binary low-density parity-check codes</title><author>Chenrong Xiong ; Zhiyuan Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-a3ccdb38ae9920ee760ae4adfae8202550cb62c25500aeef83f92080be1f40163</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Complexity theory</topic><topic>Convergence</topic><topic>Decoding</topic><topic>Error analysis</topic><topic>Iterative decoding</topic><topic>Reliability</topic><toplevel>online_resources</toplevel><creatorcontrib>Chenrong Xiong</creatorcontrib><creatorcontrib>Zhiyuan Yan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chenrong Xiong</au><au>Zhiyuan Yan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved iterative soft-reliability-based majority-logic decoding algorithm for non-binary low-density parity-check codes</atitle><btitle>2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR)</btitle><stitle>ACSSC</stitle><date>2011-11</date><risdate>2011</risdate><spage>894</spage><epage>898</epage><pages>894-898</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9781467303217</isbn><isbn>1467303216</isbn><eisbn>9781467303224</eisbn><eisbn>1467303232</eisbn><eisbn>9781467303231</eisbn><eisbn>1467303224</eisbn><abstract>Non-binary low-density parity-check (LDPC) codes have some advantages as opposed to their binary counterparts, but unfortunately their decoding complexity is a significant challenge. Hence, the iterative soft-reliability-based (ISRB) majority-logic decoding algorithm is attractive for non-binary LDPC codes, since it involves only finite field additions and multiplications as well as integer additions and comparisons. In this paper, we propose an improved ISRB majority-logic decoding algorithm by using a new reliability update. Our improved algorithm achieves better error performance and faster convergence, while further reducing the computational complexity. For instance, for a (16, 16)-regular (255, 175) cyclic Euclidean geometry LDPC code over GF(2 8 ), the proposed algorithm achieves a 0.15 dB coding gain and improves the convergence speed by 10% at a block error rate of 10 -4 versus the ISRB majority-logic decoding algorithm. Compared with the ISRB majority-logic decoding algorithm, the proposed algorithm requires the same numbers of finite field additions and multiplications but fewer integer additions and comparisons. Furthermore, the ISRB majority-logic decoding algorithm is based on the accumulation of reliability information, and hence the numerical range of the reliability information increases with iterations. In contrast, the proposed reliability update has a fixed numerical range and thus simplifies hardware implementations.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.2011.6190138</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), 2011, p.894-898
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_6190138
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Complexity theory
Convergence
Decoding
Error analysis
Iterative decoding
Reliability
title Improved iterative soft-reliability-based majority-logic decoding algorithm for non-binary low-density parity-check codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A51%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20iterative%20soft-reliability-based%20majority-logic%20decoding%20algorithm%20for%20non-binary%20low-density%20parity-check%20codes&rft.btitle=2011%20Conference%20Record%20of%20the%20Forty%20Fifth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers%20(ASILOMAR)&rft.au=Chenrong%20Xiong&rft.date=2011-11&rft.spage=894&rft.epage=898&rft.pages=894-898&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9781467303217&rft.isbn_list=1467303216&rft_id=info:doi/10.1109/ACSSC.2011.6190138&rft_dat=%3Cieee_6IE%3E6190138%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467303224&rft.eisbn_list=1467303232&rft.eisbn_list=9781467303231&rft.eisbn_list=1467303224&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6190138&rfr_iscdi=true