Implementation of 32-bit Ling and Jackson adders
Ling adders factor complexity out of the first stage of an adder to shorten the critical path. In 2004, Jackson and Talwar proposed a generalization of the Ling adder that reduces the complexity of the critical generate path at the expense of increased complexity in the propagate logic. This paper c...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ling adders factor complexity out of the first stage of an adder to shorten the critical path. In 2004, Jackson and Talwar proposed a generalization of the Ling adder that reduces the complexity of the critical generate path at the expense of increased complexity in the propagate logic. This paper compares implementations of 32-bit Ling and Jackson adders to the optimized Sklansky architecture produced by Design Compiler in a 45 nm process. The Ling adder is 3% faster and uses 7% less energy, achieving a delay of 8.3 FO4 inverters. The Jackson adder is only 1% faster and uses 45% more energy. However, this is the first published implementation of a Jackson adder with all details shown. |
---|---|
ISSN: | 1058-6393 2576-2303 |
DOI: | 10.1109/ACSSC.2011.6189978 |