Implementation of fractal image coding for GPGPU systems and its power-aware evaluation

GPGPU (General Purpose computing on Graphic Processing Unit) systems attract a great deal of attention, which are used for general-purpose computations like numerical calculations as well as graphic processing, but the peak power consumption of the GPU is relatively high. On the other hand, fractal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wakatani, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Wakatani, A.
description GPGPU (General Purpose computing on Graphic Processing Unit) systems attract a great deal of attention, which are used for general-purpose computations like numerical calculations as well as graphic processing, but the peak power consumption of the GPU is relatively high. On the other hand, fractal image coding is one of the most prominent compression technologies. It can be also used for industrial applications like image indexing methods and image retrieval methods. In this paper, we implement parallel programs for the fractal image coding algorithms on GPGPU systems by using CUDA (Compute Unified Device Architecture) and discuss the power-aware evaluation of the application. We also consider the availability of the GPU from the point of view of the green computing.
doi_str_mv 10.1109/SysCon.2012.6189434
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6189434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6189434</ieee_id><sourcerecordid>6189434</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7924ef3a46dea87bbedcbc8e5dfc632a1ed0361a9af908d39dc4a8fb41a1d2923</originalsourceid><addsrcrecordid>eNpN0MtKw0AYBeAREZSaJ-hmXiBxbsnMLCVoLBQsWHFZ_mT-KZHcyIyWvL1Fu3B1OJuPwyFkzVnGObMPb0soxyETjIus4MYqqa5IYrXhqtCS6Zzl1_-7MuKWJCF8MsbOgGbK3JGPTT912OMQIbbjQEdP_QxNhI62PRyRNqNrhyP140yrXbV7p2EJEftAYXC0jYFO4wnnFE4wI8Vv6L5-oXty46ELmFxyRfbPT_vyJd2-VpvycZu2lsVUW6HQS1CFQzC6rtE1dWMwd74ppACOjsmCgwVvmXHSukaB8bXiwJ2wQq7I-o9tEfEwzefN83K4vCF_ABrtVbI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Implementation of fractal image coding for GPGPU systems and its power-aware evaluation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wakatani, A.</creator><creatorcontrib>Wakatani, A.</creatorcontrib><description>GPGPU (General Purpose computing on Graphic Processing Unit) systems attract a great deal of attention, which are used for general-purpose computations like numerical calculations as well as graphic processing, but the peak power consumption of the GPU is relatively high. On the other hand, fractal image coding is one of the most prominent compression technologies. It can be also used for industrial applications like image indexing methods and image retrieval methods. In this paper, we implement parallel programs for the fractal image coding algorithms on GPGPU systems by using CUDA (Compute Unified Device Architecture) and discuss the power-aware evaluation of the application. We also consider the availability of the GPU from the point of view of the green computing.</description><identifier>ISBN: 9781467307482</identifier><identifier>ISBN: 1467307483</identifier><identifier>EISBN: 9781467307505</identifier><identifier>EISBN: 1467307505</identifier><identifier>EISBN: 9781467307499</identifier><identifier>EISBN: 1467307491</identifier><identifier>DOI: 10.1109/SysCon.2012.6189434</identifier><language>eng</language><publisher>IEEE</publisher><subject>CUDA ; Fractals ; GPU ; Graphics processing unit ; Image coding ; Instruction sets ; Memory management ; multicore processor ; multithread ; Parallel algorithms ; parallel processing ; Power demand</subject><ispartof>2012 IEEE International Systems Conference SysCon 2012, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6189434$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6189434$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wakatani, A.</creatorcontrib><title>Implementation of fractal image coding for GPGPU systems and its power-aware evaluation</title><title>2012 IEEE International Systems Conference SysCon 2012</title><addtitle>SysCon</addtitle><description>GPGPU (General Purpose computing on Graphic Processing Unit) systems attract a great deal of attention, which are used for general-purpose computations like numerical calculations as well as graphic processing, but the peak power consumption of the GPU is relatively high. On the other hand, fractal image coding is one of the most prominent compression technologies. It can be also used for industrial applications like image indexing methods and image retrieval methods. In this paper, we implement parallel programs for the fractal image coding algorithms on GPGPU systems by using CUDA (Compute Unified Device Architecture) and discuss the power-aware evaluation of the application. We also consider the availability of the GPU from the point of view of the green computing.</description><subject>CUDA</subject><subject>Fractals</subject><subject>GPU</subject><subject>Graphics processing unit</subject><subject>Image coding</subject><subject>Instruction sets</subject><subject>Memory management</subject><subject>multicore processor</subject><subject>multithread</subject><subject>Parallel algorithms</subject><subject>parallel processing</subject><subject>Power demand</subject><isbn>9781467307482</isbn><isbn>1467307483</isbn><isbn>9781467307505</isbn><isbn>1467307505</isbn><isbn>9781467307499</isbn><isbn>1467307491</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpN0MtKw0AYBeAREZSaJ-hmXiBxbsnMLCVoLBQsWHFZ_mT-KZHcyIyWvL1Fu3B1OJuPwyFkzVnGObMPb0soxyETjIus4MYqqa5IYrXhqtCS6Zzl1_-7MuKWJCF8MsbOgGbK3JGPTT912OMQIbbjQEdP_QxNhI62PRyRNqNrhyP140yrXbV7p2EJEftAYXC0jYFO4wnnFE4wI8Vv6L5-oXty46ELmFxyRfbPT_vyJd2-VpvycZu2lsVUW6HQS1CFQzC6rtE1dWMwd74ppACOjsmCgwVvmXHSukaB8bXiwJ2wQq7I-o9tEfEwzefN83K4vCF_ABrtVbI</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Wakatani, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Implementation of fractal image coding for GPGPU systems and its power-aware evaluation</title><author>Wakatani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7924ef3a46dea87bbedcbc8e5dfc632a1ed0361a9af908d39dc4a8fb41a1d2923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CUDA</topic><topic>Fractals</topic><topic>GPU</topic><topic>Graphics processing unit</topic><topic>Image coding</topic><topic>Instruction sets</topic><topic>Memory management</topic><topic>multicore processor</topic><topic>multithread</topic><topic>Parallel algorithms</topic><topic>parallel processing</topic><topic>Power demand</topic><toplevel>online_resources</toplevel><creatorcontrib>Wakatani, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wakatani, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Implementation of fractal image coding for GPGPU systems and its power-aware evaluation</atitle><btitle>2012 IEEE International Systems Conference SysCon 2012</btitle><stitle>SysCon</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467307482</isbn><isbn>1467307483</isbn><eisbn>9781467307505</eisbn><eisbn>1467307505</eisbn><eisbn>9781467307499</eisbn><eisbn>1467307491</eisbn><abstract>GPGPU (General Purpose computing on Graphic Processing Unit) systems attract a great deal of attention, which are used for general-purpose computations like numerical calculations as well as graphic processing, but the peak power consumption of the GPU is relatively high. On the other hand, fractal image coding is one of the most prominent compression technologies. It can be also used for industrial applications like image indexing methods and image retrieval methods. In this paper, we implement parallel programs for the fractal image coding algorithms on GPGPU systems by using CUDA (Compute Unified Device Architecture) and discuss the power-aware evaluation of the application. We also consider the availability of the GPU from the point of view of the green computing.</abstract><pub>IEEE</pub><doi>10.1109/SysCon.2012.6189434</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467307482
ispartof 2012 IEEE International Systems Conference SysCon 2012, 2012, p.1-5
issn
language eng
recordid cdi_ieee_primary_6189434
source IEEE Electronic Library (IEL) Conference Proceedings
subjects CUDA
Fractals
GPU
Graphics processing unit
Image coding
Instruction sets
Memory management
multicore processor
multithread
Parallel algorithms
parallel processing
Power demand
title Implementation of fractal image coding for GPGPU systems and its power-aware evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Implementation%20of%20fractal%20image%20coding%20for%20GPGPU%20systems%20and%20its%20power-aware%20evaluation&rft.btitle=2012%20IEEE%20International%20Systems%20Conference%20SysCon%202012&rft.au=Wakatani,%20A.&rft.date=2012-03&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467307482&rft.isbn_list=1467307483&rft_id=info:doi/10.1109/SysCon.2012.6189434&rft_dat=%3Cieee_6IE%3E6189434%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467307505&rft.eisbn_list=1467307505&rft.eisbn_list=9781467307499&rft.eisbn_list=1467307491&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6189434&rfr_iscdi=true