Data center cooling management and analysis - a model based approach

As the hub of information aggregation, processing, and dissemination, today's data centers consume significant amount of energy. The data center electricity consumption mainly comes from the IT equipment and the supporting cooling facility that manages the thermal status of the IT equipment. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rongliang Zhou, Zhikui Wang, Bash, C. E., McReynolds, A.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue
container_start_page 98
container_title
container_volume
creator Rongliang Zhou
Zhikui Wang
Bash, C. E.
McReynolds, A.
description As the hub of information aggregation, processing, and dissemination, today's data centers consume significant amount of energy. The data center electricity consumption mainly comes from the IT equipment and the supporting cooling facility that manages the thermal status of the IT equipment. The traditional data center cooling facility usually consists of chilled water cooled computer room air conditioning (CRAC) units and chillers that provide chilled water to the CRAC units. Electricity used to power the cooling facility could take up to a half of the total data center electricity consumption, and is a major contributor to the data center total cost of ownership. While the data center industry has established the best practice to improve the cooling efficiency, the majority of it is rule of thumbs providing only qualitative guidance. In order to provide on demand cooling and achieve improved cooling efficiency, a model based description of the data center thermal environment is indispensable. In this paper, a computationally efficient multivariable model capturing the effects of CRAC units blower speed and supply air temperature (SAT) on rack inlet temperatures is introduced, and model identification and reduction procedures are discussed. Using the model developed, data center cooling system design and analysis such as thermal zone mapping, CRAC units load balancing, and hot spot detection are investigated.
doi_str_mv 10.1109/STHERM.2012.6188832
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6188832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6188832</ieee_id><sourcerecordid>6188832</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8e92dd390e6e230cd9f63f335941223a7184bf72df9cb056f70535a5fcb2ea823</originalsourceid><addsrcrecordid>eNpNUMtOwzAQNC-JqPQLevEPuKzXdWwfUVtapCIkKOdqk6xLUB5Vkkv_niB64DAz0sxoDiPETMNcawiPH_vt-v11jqBxnmrvvcErMQ3O60XqzG8FrkWC1jmlAeDmf6YhvRXJyFYhor4X077_HkvgwHgLiVitaCCZczNwJ_O2rcrmKGtq6Mj1aEpqihFUnfuyl0qSrNuCK5lRz2NwOnUt5V8P4i5S1fP0ohPx-bzeL7dq97Z5WT7tVKmdHZTngEVhAnDKaCAvQkxNNMaGhUY05LRfZNFhEUOegU2jA2ss2ZhnyOTRTMTsb7dk5sOpK2vqzofLJ-YHSnFPzw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data center cooling management and analysis - a model based approach</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rongliang Zhou ; Zhikui Wang ; Bash, C. E. ; McReynolds, A.</creator><creatorcontrib>Rongliang Zhou ; Zhikui Wang ; Bash, C. E. ; McReynolds, A.</creatorcontrib><description>As the hub of information aggregation, processing, and dissemination, today's data centers consume significant amount of energy. The data center electricity consumption mainly comes from the IT equipment and the supporting cooling facility that manages the thermal status of the IT equipment. The traditional data center cooling facility usually consists of chilled water cooled computer room air conditioning (CRAC) units and chillers that provide chilled water to the CRAC units. Electricity used to power the cooling facility could take up to a half of the total data center electricity consumption, and is a major contributor to the data center total cost of ownership. While the data center industry has established the best practice to improve the cooling efficiency, the majority of it is rule of thumbs providing only qualitative guidance. In order to provide on demand cooling and achieve improved cooling efficiency, a model based description of the data center thermal environment is indispensable. In this paper, a computationally efficient multivariable model capturing the effects of CRAC units blower speed and supply air temperature (SAT) on rack inlet temperatures is introduced, and model identification and reduction procedures are discussed. Using the model developed, data center cooling system design and analysis such as thermal zone mapping, CRAC units load balancing, and hot spot detection are investigated.</description><identifier>ISSN: 1065-2221</identifier><identifier>ISBN: 9781467311106</identifier><identifier>ISBN: 1467311103</identifier><identifier>EISSN: 2577-1000</identifier><identifier>EISBN: 9781467311090</identifier><identifier>EISBN: 9781467311113</identifier><identifier>EISBN: 146731109X</identifier><identifier>EISBN: 1467311111</identifier><identifier>DOI: 10.1109/STHERM.2012.6188832</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2012, p.98-103</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6188832$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6188832$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rongliang Zhou</creatorcontrib><creatorcontrib>Zhikui Wang</creatorcontrib><creatorcontrib>Bash, C. E.</creatorcontrib><creatorcontrib>McReynolds, A.</creatorcontrib><title>Data center cooling management and analysis - a model based approach</title><title>2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)</title><addtitle>STHERM</addtitle><description>As the hub of information aggregation, processing, and dissemination, today's data centers consume significant amount of energy. The data center electricity consumption mainly comes from the IT equipment and the supporting cooling facility that manages the thermal status of the IT equipment. The traditional data center cooling facility usually consists of chilled water cooled computer room air conditioning (CRAC) units and chillers that provide chilled water to the CRAC units. Electricity used to power the cooling facility could take up to a half of the total data center electricity consumption, and is a major contributor to the data center total cost of ownership. While the data center industry has established the best practice to improve the cooling efficiency, the majority of it is rule of thumbs providing only qualitative guidance. In order to provide on demand cooling and achieve improved cooling efficiency, a model based description of the data center thermal environment is indispensable. In this paper, a computationally efficient multivariable model capturing the effects of CRAC units blower speed and supply air temperature (SAT) on rack inlet temperatures is introduced, and model identification and reduction procedures are discussed. Using the model developed, data center cooling system design and analysis such as thermal zone mapping, CRAC units load balancing, and hot spot detection are investigated.</description><issn>1065-2221</issn><issn>2577-1000</issn><isbn>9781467311106</isbn><isbn>1467311103</isbn><isbn>9781467311090</isbn><isbn>9781467311113</isbn><isbn>146731109X</isbn><isbn>1467311111</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNUMtOwzAQNC-JqPQLevEPuKzXdWwfUVtapCIkKOdqk6xLUB5Vkkv_niB64DAz0sxoDiPETMNcawiPH_vt-v11jqBxnmrvvcErMQ3O60XqzG8FrkWC1jmlAeDmf6YhvRXJyFYhor4X077_HkvgwHgLiVitaCCZczNwJ_O2rcrmKGtq6Mj1aEpqihFUnfuyl0qSrNuCK5lRz2NwOnUt5V8P4i5S1fP0ohPx-bzeL7dq97Z5WT7tVKmdHZTngEVhAnDKaCAvQkxNNMaGhUY05LRfZNFhEUOegU2jA2ss2ZhnyOTRTMTsb7dk5sOpK2vqzofLJ-YHSnFPzw</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Rongliang Zhou</creator><creator>Zhikui Wang</creator><creator>Bash, C. E.</creator><creator>McReynolds, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Data center cooling management and analysis - a model based approach</title><author>Rongliang Zhou ; Zhikui Wang ; Bash, C. E. ; McReynolds, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8e92dd390e6e230cd9f63f335941223a7184bf72df9cb056f70535a5fcb2ea823</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rongliang Zhou</creatorcontrib><creatorcontrib>Zhikui Wang</creatorcontrib><creatorcontrib>Bash, C. E.</creatorcontrib><creatorcontrib>McReynolds, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rongliang Zhou</au><au>Zhikui Wang</au><au>Bash, C. E.</au><au>McReynolds, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data center cooling management and analysis - a model based approach</atitle><btitle>2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)</btitle><stitle>STHERM</stitle><date>2012-03</date><risdate>2012</risdate><spage>98</spage><epage>103</epage><pages>98-103</pages><issn>1065-2221</issn><eissn>2577-1000</eissn><isbn>9781467311106</isbn><isbn>1467311103</isbn><eisbn>9781467311090</eisbn><eisbn>9781467311113</eisbn><eisbn>146731109X</eisbn><eisbn>1467311111</eisbn><abstract>As the hub of information aggregation, processing, and dissemination, today's data centers consume significant amount of energy. The data center electricity consumption mainly comes from the IT equipment and the supporting cooling facility that manages the thermal status of the IT equipment. The traditional data center cooling facility usually consists of chilled water cooled computer room air conditioning (CRAC) units and chillers that provide chilled water to the CRAC units. Electricity used to power the cooling facility could take up to a half of the total data center electricity consumption, and is a major contributor to the data center total cost of ownership. While the data center industry has established the best practice to improve the cooling efficiency, the majority of it is rule of thumbs providing only qualitative guidance. In order to provide on demand cooling and achieve improved cooling efficiency, a model based description of the data center thermal environment is indispensable. In this paper, a computationally efficient multivariable model capturing the effects of CRAC units blower speed and supply air temperature (SAT) on rack inlet temperatures is introduced, and model identification and reduction procedures are discussed. Using the model developed, data center cooling system design and analysis such as thermal zone mapping, CRAC units load balancing, and hot spot detection are investigated.</abstract><pub>IEEE</pub><doi>10.1109/STHERM.2012.6188832</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1065-2221
ispartof 2012 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2012, p.98-103
issn 1065-2221
2577-1000
language eng
recordid cdi_ieee_primary_6188832
source IEEE Electronic Library (IEL) Conference Proceedings
title Data center cooling management and analysis - a model based approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20center%20cooling%20management%20and%20analysis%20-%20a%20model%20based%20approach&rft.btitle=2012%2028th%20Annual%20IEEE%20Semiconductor%20Thermal%20Measurement%20and%20Management%20Symposium%20(SEMI-THERM)&rft.au=Rongliang%20Zhou&rft.date=2012-03&rft.spage=98&rft.epage=103&rft.pages=98-103&rft.issn=1065-2221&rft.eissn=2577-1000&rft.isbn=9781467311106&rft.isbn_list=1467311103&rft_id=info:doi/10.1109/STHERM.2012.6188832&rft_dat=%3Cieee_6IE%3E6188832%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467311090&rft.eisbn_list=9781467311113&rft.eisbn_list=146731109X&rft.eisbn_list=1467311111&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6188832&rfr_iscdi=true