Bit error rate estimation in SRAM considering temperature fluctuation

SRAM performance varies depending on the operating environment. This study specifically examines the bit error rate (BER) when considering temperature fluctuation. The SRAM performance is generally determined using a read margin because a half-select issue must be considered even in a write operatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kagiyama, Y., Okumura, S., Yanagida, K., Yoshimoto, S., Nakata, Y., Izumi, S., Kawaguchi, H., Yoshimoto, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue
container_start_page 516
container_title
container_volume
creator Kagiyama, Y.
Okumura, S.
Yanagida, K.
Yoshimoto, S.
Nakata, Y.
Izumi, S.
Kawaguchi, H.
Yoshimoto, M.
description SRAM performance varies depending on the operating environment. This study specifically examines the bit error rate (BER) when considering temperature fluctuation. The SRAM performance is generally determined using a read margin because a half-select issue must be considered even in a write operation. As a metric of the SRAM's performance, we also adopt a static noise margin (SNM) with which we evaluate three methods to estimate the BER considering temperature fluctuation. Method 1 iterates calculations for the SNM many times with Monte Carlo simulation. BER is defined as the number of cells that have no margin. Method 2 includes the assumption that SNM forms a normal distribution. Its BER is defined as a probability distribution function. Method 3 includes the assumption that SNM is determined as either square but not the smaller one of the two squares. The BER estimations are compared with a test chip result implemented in a 65-nm CMOS technology: Method 2 has 11.10% and Method 3 has 4.09% difference (unfortunately, Method 1 has no data missing because of a lack of simulations). The shift of the minimum operating voltage between the low and high temperatures is 0.04 V at a 128-Kb capacity when the temperature fluctuates from 25°C to 100°C.
doi_str_mv 10.1109/ISQED.2012.6187542
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6187542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6187542</ieee_id><sourcerecordid>6187542</sourcerecordid><originalsourceid>FETCH-LOGICAL-i241t-c09d5ce81648197ab559e33e7bb114adf5f90d365ba56fa83e25b907b120a1043</originalsourceid><addsrcrecordid>eNo9kM1OAjEUhetfIiAvoJu-wIy9be-0XSKMSoIxiq5JZ-aOqYGBdMrCt5coujqL78vJyWHsGkQOINztfPlSznIpQOYFWINanrAh6MIoEArlKRuA0zZT0uEZGztj_5jG839mzSUb9v2nEBrR2AEr70LiFOM28ugTcepT2PgUth0PHV--Tp54ve360FAM3QdPtNnRQdxH4u16X6f9j3vFLlq_7ml8zBF7vy_fpo_Z4vlhPp0ssiA1pKwWrsGaLBTagjO-QnSkFJmqAtC-abF1olEFVh6L1ltFEisnTAVSeBBajdjNb28gotUuHqbGr9XxDvUNkSFPsQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Bit error rate estimation in SRAM considering temperature fluctuation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kagiyama, Y. ; Okumura, S. ; Yanagida, K. ; Yoshimoto, S. ; Nakata, Y. ; Izumi, S. ; Kawaguchi, H. ; Yoshimoto, M.</creator><creatorcontrib>Kagiyama, Y. ; Okumura, S. ; Yanagida, K. ; Yoshimoto, S. ; Nakata, Y. ; Izumi, S. ; Kawaguchi, H. ; Yoshimoto, M.</creatorcontrib><description>SRAM performance varies depending on the operating environment. This study specifically examines the bit error rate (BER) when considering temperature fluctuation. The SRAM performance is generally determined using a read margin because a half-select issue must be considered even in a write operation. As a metric of the SRAM's performance, we also adopt a static noise margin (SNM) with which we evaluate three methods to estimate the BER considering temperature fluctuation. Method 1 iterates calculations for the SNM many times with Monte Carlo simulation. BER is defined as the number of cells that have no margin. Method 2 includes the assumption that SNM forms a normal distribution. Its BER is defined as a probability distribution function. Method 3 includes the assumption that SNM is determined as either square but not the smaller one of the two squares. The BER estimations are compared with a test chip result implemented in a 65-nm CMOS technology: Method 2 has 11.10% and Method 3 has 4.09% difference (unfortunately, Method 1 has no data missing because of a lack of simulations). The shift of the minimum operating voltage between the low and high temperatures is 0.04 V at a 128-Kb capacity when the temperature fluctuates from 25°C to 100°C.</description><identifier>ISSN: 1948-3287</identifier><identifier>ISBN: 9781467310345</identifier><identifier>ISBN: 1467310344</identifier><identifier>EISSN: 1948-3295</identifier><identifier>EISBN: 1467310352</identifier><identifier>EISBN: 9781467310369</identifier><identifier>EISBN: 1467310360</identifier><identifier>EISBN: 9781467310352</identifier><identifier>DOI: 10.1109/ISQED.2012.6187542</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bit error rate ; Fluctuations ; Random access memory ; SRAM ; static noise margin ; Temperature ; Temperature dependence ; temperature fluctuation ; Temperature measurement ; Transistors</subject><ispartof>Thirteenth International Symposium on Quality Electronic Design (ISQED), 2012, p.516-519</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6187542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6187542$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kagiyama, Y.</creatorcontrib><creatorcontrib>Okumura, S.</creatorcontrib><creatorcontrib>Yanagida, K.</creatorcontrib><creatorcontrib>Yoshimoto, S.</creatorcontrib><creatorcontrib>Nakata, Y.</creatorcontrib><creatorcontrib>Izumi, S.</creatorcontrib><creatorcontrib>Kawaguchi, H.</creatorcontrib><creatorcontrib>Yoshimoto, M.</creatorcontrib><title>Bit error rate estimation in SRAM considering temperature fluctuation</title><title>Thirteenth International Symposium on Quality Electronic Design (ISQED)</title><addtitle>ISQED</addtitle><description>SRAM performance varies depending on the operating environment. This study specifically examines the bit error rate (BER) when considering temperature fluctuation. The SRAM performance is generally determined using a read margin because a half-select issue must be considered even in a write operation. As a metric of the SRAM's performance, we also adopt a static noise margin (SNM) with which we evaluate three methods to estimate the BER considering temperature fluctuation. Method 1 iterates calculations for the SNM many times with Monte Carlo simulation. BER is defined as the number of cells that have no margin. Method 2 includes the assumption that SNM forms a normal distribution. Its BER is defined as a probability distribution function. Method 3 includes the assumption that SNM is determined as either square but not the smaller one of the two squares. The BER estimations are compared with a test chip result implemented in a 65-nm CMOS technology: Method 2 has 11.10% and Method 3 has 4.09% difference (unfortunately, Method 1 has no data missing because of a lack of simulations). The shift of the minimum operating voltage between the low and high temperatures is 0.04 V at a 128-Kb capacity when the temperature fluctuates from 25°C to 100°C.</description><subject>Bit error rate</subject><subject>Fluctuations</subject><subject>Random access memory</subject><subject>SRAM</subject><subject>static noise margin</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>temperature fluctuation</subject><subject>Temperature measurement</subject><subject>Transistors</subject><issn>1948-3287</issn><issn>1948-3295</issn><isbn>9781467310345</isbn><isbn>1467310344</isbn><isbn>1467310352</isbn><isbn>9781467310369</isbn><isbn>1467310360</isbn><isbn>9781467310352</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1OAjEUhetfIiAvoJu-wIy9be-0XSKMSoIxiq5JZ-aOqYGBdMrCt5coujqL78vJyWHsGkQOINztfPlSznIpQOYFWINanrAh6MIoEArlKRuA0zZT0uEZGztj_5jG839mzSUb9v2nEBrR2AEr70LiFOM28ugTcepT2PgUth0PHV--Tp54ve360FAM3QdPtNnRQdxH4u16X6f9j3vFLlq_7ml8zBF7vy_fpo_Z4vlhPp0ssiA1pKwWrsGaLBTagjO-QnSkFJmqAtC-abF1olEFVh6L1ltFEisnTAVSeBBajdjNb28gotUuHqbGr9XxDvUNkSFPsQ</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Kagiyama, Y.</creator><creator>Okumura, S.</creator><creator>Yanagida, K.</creator><creator>Yoshimoto, S.</creator><creator>Nakata, Y.</creator><creator>Izumi, S.</creator><creator>Kawaguchi, H.</creator><creator>Yoshimoto, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Bit error rate estimation in SRAM considering temperature fluctuation</title><author>Kagiyama, Y. ; Okumura, S. ; Yanagida, K. ; Yoshimoto, S. ; Nakata, Y. ; Izumi, S. ; Kawaguchi, H. ; Yoshimoto, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i241t-c09d5ce81648197ab559e33e7bb114adf5f90d365ba56fa83e25b907b120a1043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bit error rate</topic><topic>Fluctuations</topic><topic>Random access memory</topic><topic>SRAM</topic><topic>static noise margin</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>temperature fluctuation</topic><topic>Temperature measurement</topic><topic>Transistors</topic><toplevel>online_resources</toplevel><creatorcontrib>Kagiyama, Y.</creatorcontrib><creatorcontrib>Okumura, S.</creatorcontrib><creatorcontrib>Yanagida, K.</creatorcontrib><creatorcontrib>Yoshimoto, S.</creatorcontrib><creatorcontrib>Nakata, Y.</creatorcontrib><creatorcontrib>Izumi, S.</creatorcontrib><creatorcontrib>Kawaguchi, H.</creatorcontrib><creatorcontrib>Yoshimoto, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kagiyama, Y.</au><au>Okumura, S.</au><au>Yanagida, K.</au><au>Yoshimoto, S.</au><au>Nakata, Y.</au><au>Izumi, S.</au><au>Kawaguchi, H.</au><au>Yoshimoto, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Bit error rate estimation in SRAM considering temperature fluctuation</atitle><btitle>Thirteenth International Symposium on Quality Electronic Design (ISQED)</btitle><stitle>ISQED</stitle><date>2012-03</date><risdate>2012</risdate><spage>516</spage><epage>519</epage><pages>516-519</pages><issn>1948-3287</issn><eissn>1948-3295</eissn><isbn>9781467310345</isbn><isbn>1467310344</isbn><eisbn>1467310352</eisbn><eisbn>9781467310369</eisbn><eisbn>1467310360</eisbn><eisbn>9781467310352</eisbn><abstract>SRAM performance varies depending on the operating environment. This study specifically examines the bit error rate (BER) when considering temperature fluctuation. The SRAM performance is generally determined using a read margin because a half-select issue must be considered even in a write operation. As a metric of the SRAM's performance, we also adopt a static noise margin (SNM) with which we evaluate three methods to estimate the BER considering temperature fluctuation. Method 1 iterates calculations for the SNM many times with Monte Carlo simulation. BER is defined as the number of cells that have no margin. Method 2 includes the assumption that SNM forms a normal distribution. Its BER is defined as a probability distribution function. Method 3 includes the assumption that SNM is determined as either square but not the smaller one of the two squares. The BER estimations are compared with a test chip result implemented in a 65-nm CMOS technology: Method 2 has 11.10% and Method 3 has 4.09% difference (unfortunately, Method 1 has no data missing because of a lack of simulations). The shift of the minimum operating voltage between the low and high temperatures is 0.04 V at a 128-Kb capacity when the temperature fluctuates from 25°C to 100°C.</abstract><pub>IEEE</pub><doi>10.1109/ISQED.2012.6187542</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-3287
ispartof Thirteenth International Symposium on Quality Electronic Design (ISQED), 2012, p.516-519
issn 1948-3287
1948-3295
language eng
recordid cdi_ieee_primary_6187542
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bit error rate
Fluctuations
Random access memory
SRAM
static noise margin
Temperature
Temperature dependence
temperature fluctuation
Temperature measurement
Transistors
title Bit error rate estimation in SRAM considering temperature fluctuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Bit%20error%20rate%20estimation%20in%20SRAM%20considering%20temperature%20fluctuation&rft.btitle=Thirteenth%20International%20Symposium%20on%20Quality%20Electronic%20Design%20(ISQED)&rft.au=Kagiyama,%20Y.&rft.date=2012-03&rft.spage=516&rft.epage=519&rft.pages=516-519&rft.issn=1948-3287&rft.eissn=1948-3295&rft.isbn=9781467310345&rft.isbn_list=1467310344&rft_id=info:doi/10.1109/ISQED.2012.6187542&rft_dat=%3Cieee_6IE%3E6187542%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467310352&rft.eisbn_list=9781467310369&rft.eisbn_list=1467310360&rft.eisbn_list=9781467310352&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6187542&rfr_iscdi=true