Fine grain fault tolerance - A key to high reliability for FPGAs in space
Nowadays using SRAM-based FPGAs in space missions due to their flexibility and reprogrammability is on focus. In contrary, they are effective against radiation effects and need new trends in reliability issues. This paper concerns fine grain views to mitigation problem in FPGAs. For new FPGA generat...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Niknahad, M. Sander, O. Becker, J. |
description | Nowadays using SRAM-based FPGAs in space missions due to their flexibility and reprogrammability is on focus. In contrary, they are effective against radiation effects and need new trends in reliability issues. This paper concerns fine grain views to mitigation problem in FPGAs. For new FPGA generations simply replicating complete systems in Triple Modular Redundancy (TMR) technique may not be sufficient anymore. This especially applies to the environments like space, as higher failure rates may disrupt a second instance before the first one recovers. We focus on SEU mitigation challenges in SRAM-based FPGAs, which can result in crucial situations. The approach is a fine grain fault tolerance with using fine grain TMR also Quadruple Force Decide Redundancy (QFDR). We transform the classical concept of TMR and Quadded Redundancy on Logic Gates to a technological approach based on FPGA structure primitives like LUTs. We integrate common CAD tools to apply the techniques for different, complex designs simply. We simulate the faulty circuit and count the number of LUTs, which can be corrupted while the system still functions. Result shows the reliability increase of about 50 percent for QFDR. |
doi_str_mv | 10.1109/AERO.2012.6187233 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6187233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6187233</ieee_id><sourcerecordid>6187233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-fe3a2dc38f2e605ea9b442928e344bd05bd1a280dd376bcfac9544b0c29810483</originalsourceid><addsrcrecordid>eNpFkN9KwzAYxeM_sM49gHiTF0hNvjRNclnGOgeDiSh4N9L0yxat3WjrRd_eggPPzYHz45yLQ8iD4KkQ3D4Vy9dtClxAmgujQcoLcicypTVXStlLkoC1OQOpzNU_yPU1Saa2YhLkxy2Z9_0nn6Q5aGESsi5ji3TfudjS4H6agQ7HBjvXeqSMFvQLxymhh7g_0A6b6KrYxGGk4djR8mVV9HQq9ifn8Z7cBNf0OD_7jLyXy7fFM9tsV-tFsWEeQA4soHRQe2kCYM4VOltlGVgwKLOsqrmqauHA8LqWOq98cN6qCXAP1gieGTkjj3-7ERF3py5-u27cnS-Rv51VTz4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fine grain fault tolerance - A key to high reliability for FPGAs in space</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Niknahad, M. ; Sander, O. ; Becker, J.</creator><creatorcontrib>Niknahad, M. ; Sander, O. ; Becker, J.</creatorcontrib><description>Nowadays using SRAM-based FPGAs in space missions due to their flexibility and reprogrammability is on focus. In contrary, they are effective against radiation effects and need new trends in reliability issues. This paper concerns fine grain views to mitigation problem in FPGAs. For new FPGA generations simply replicating complete systems in Triple Modular Redundancy (TMR) technique may not be sufficient anymore. This especially applies to the environments like space, as higher failure rates may disrupt a second instance before the first one recovers. We focus on SEU mitigation challenges in SRAM-based FPGAs, which can result in crucial situations. The approach is a fine grain fault tolerance with using fine grain TMR also Quadruple Force Decide Redundancy (QFDR). We transform the classical concept of TMR and Quadded Redundancy on Logic Gates to a technological approach based on FPGA structure primitives like LUTs. We integrate common CAD tools to apply the techniques for different, complex designs simply. We simulate the faulty circuit and count the number of LUTs, which can be corrupted while the system still functions. Result shows the reliability increase of about 50 percent for QFDR.</description><identifier>ISSN: 1095-323X</identifier><identifier>ISBN: 1457705567</identifier><identifier>ISBN: 9781457705564</identifier><identifier>EISSN: 2996-2358</identifier><identifier>EISBN: 1457705559</identifier><identifier>EISBN: 9781457705571</identifier><identifier>EISBN: 9781457705557</identifier><identifier>EISBN: 1457705575</identifier><identifier>DOI: 10.1109/AERO.2012.6187233</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clocks ; Fault tolerant systems ; Field programmable gate arrays ; Random access memory ; Redundancy ; Tunneling magnetoresistance</subject><ispartof>2012 IEEE Aerospace Conference, 2012, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-fe3a2dc38f2e605ea9b442928e344bd05bd1a280dd376bcfac9544b0c29810483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6187233$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6187233$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niknahad, M.</creatorcontrib><creatorcontrib>Sander, O.</creatorcontrib><creatorcontrib>Becker, J.</creatorcontrib><title>Fine grain fault tolerance - A key to high reliability for FPGAs in space</title><title>2012 IEEE Aerospace Conference</title><addtitle>AERO</addtitle><description>Nowadays using SRAM-based FPGAs in space missions due to their flexibility and reprogrammability is on focus. In contrary, they are effective against radiation effects and need new trends in reliability issues. This paper concerns fine grain views to mitigation problem in FPGAs. For new FPGA generations simply replicating complete systems in Triple Modular Redundancy (TMR) technique may not be sufficient anymore. This especially applies to the environments like space, as higher failure rates may disrupt a second instance before the first one recovers. We focus on SEU mitigation challenges in SRAM-based FPGAs, which can result in crucial situations. The approach is a fine grain fault tolerance with using fine grain TMR also Quadruple Force Decide Redundancy (QFDR). We transform the classical concept of TMR and Quadded Redundancy on Logic Gates to a technological approach based on FPGA structure primitives like LUTs. We integrate common CAD tools to apply the techniques for different, complex designs simply. We simulate the faulty circuit and count the number of LUTs, which can be corrupted while the system still functions. Result shows the reliability increase of about 50 percent for QFDR.</description><subject>Clocks</subject><subject>Fault tolerant systems</subject><subject>Field programmable gate arrays</subject><subject>Random access memory</subject><subject>Redundancy</subject><subject>Tunneling magnetoresistance</subject><issn>1095-323X</issn><issn>2996-2358</issn><isbn>1457705567</isbn><isbn>9781457705564</isbn><isbn>1457705559</isbn><isbn>9781457705571</isbn><isbn>9781457705557</isbn><isbn>1457705575</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN9KwzAYxeM_sM49gHiTF0hNvjRNclnGOgeDiSh4N9L0yxat3WjrRd_eggPPzYHz45yLQ8iD4KkQ3D4Vy9dtClxAmgujQcoLcicypTVXStlLkoC1OQOpzNU_yPU1Saa2YhLkxy2Z9_0nn6Q5aGESsi5ji3TfudjS4H6agQ7HBjvXeqSMFvQLxymhh7g_0A6b6KrYxGGk4djR8mVV9HQq9ifn8Z7cBNf0OD_7jLyXy7fFM9tsV-tFsWEeQA4soHRQe2kCYM4VOltlGVgwKLOsqrmqauHA8LqWOq98cN6qCXAP1gieGTkjj3-7ERF3py5-u27cnS-Rv51VTz4</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Niknahad, M.</creator><creator>Sander, O.</creator><creator>Becker, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Fine grain fault tolerance - A key to high reliability for FPGAs in space</title><author>Niknahad, M. ; Sander, O. ; Becker, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-fe3a2dc38f2e605ea9b442928e344bd05bd1a280dd376bcfac9544b0c29810483</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Clocks</topic><topic>Fault tolerant systems</topic><topic>Field programmable gate arrays</topic><topic>Random access memory</topic><topic>Redundancy</topic><topic>Tunneling magnetoresistance</topic><toplevel>online_resources</toplevel><creatorcontrib>Niknahad, M.</creatorcontrib><creatorcontrib>Sander, O.</creatorcontrib><creatorcontrib>Becker, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niknahad, M.</au><au>Sander, O.</au><au>Becker, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fine grain fault tolerance - A key to high reliability for FPGAs in space</atitle><btitle>2012 IEEE Aerospace Conference</btitle><stitle>AERO</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1095-323X</issn><eissn>2996-2358</eissn><isbn>1457705567</isbn><isbn>9781457705564</isbn><eisbn>1457705559</eisbn><eisbn>9781457705571</eisbn><eisbn>9781457705557</eisbn><eisbn>1457705575</eisbn><abstract>Nowadays using SRAM-based FPGAs in space missions due to their flexibility and reprogrammability is on focus. In contrary, they are effective against radiation effects and need new trends in reliability issues. This paper concerns fine grain views to mitigation problem in FPGAs. For new FPGA generations simply replicating complete systems in Triple Modular Redundancy (TMR) technique may not be sufficient anymore. This especially applies to the environments like space, as higher failure rates may disrupt a second instance before the first one recovers. We focus on SEU mitigation challenges in SRAM-based FPGAs, which can result in crucial situations. The approach is a fine grain fault tolerance with using fine grain TMR also Quadruple Force Decide Redundancy (QFDR). We transform the classical concept of TMR and Quadded Redundancy on Logic Gates to a technological approach based on FPGA structure primitives like LUTs. We integrate common CAD tools to apply the techniques for different, complex designs simply. We simulate the faulty circuit and count the number of LUTs, which can be corrupted while the system still functions. Result shows the reliability increase of about 50 percent for QFDR.</abstract><pub>IEEE</pub><doi>10.1109/AERO.2012.6187233</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1095-323X |
ispartof | 2012 IEEE Aerospace Conference, 2012, p.1-10 |
issn | 1095-323X 2996-2358 |
language | eng |
recordid | cdi_ieee_primary_6187233 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clocks Fault tolerant systems Field programmable gate arrays Random access memory Redundancy Tunneling magnetoresistance |
title | Fine grain fault tolerance - A key to high reliability for FPGAs in space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fine%20grain%20fault%20tolerance%20-%20A%20key%20to%20high%20reliability%20for%20FPGAs%20in%20space&rft.btitle=2012%20IEEE%20Aerospace%20Conference&rft.au=Niknahad,%20M.&rft.date=2012-03&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1095-323X&rft.eissn=2996-2358&rft.isbn=1457705567&rft.isbn_list=9781457705564&rft_id=info:doi/10.1109/AERO.2012.6187233&rft_dat=%3Cieee_6IE%3E6187233%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457705559&rft.eisbn_list=9781457705571&rft.eisbn_list=9781457705557&rft.eisbn_list=1457705575&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6187233&rfr_iscdi=true |