Driving pattern identification for EV range estimation

This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hai Yu, Finn Tseng, McGee, R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Hai Yu
Finn Tseng
McGee, R.
description This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles.
doi_str_mv 10.1109/IEVC.2012.6183207
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6183207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6183207</ieee_id><sourcerecordid>6183207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c138t-5bf25d67b3753b09f331e5727f11af4f4685aa807652e45fe074d6b8464a0ac73</originalsourceid><addsrcrecordid>eNo1j0FLAzEUhCMiqHV_gHjJH9g1Ly_Jyx5lXWuh4EV7LdndpEQ0Ldkg-O8tWucyzHeYYRi7BdEAiPZ-1W-6RgqQjQGLUtAZuwZlCEEbwHNWtWT_s8RLVs3zuziKBAqtr5h5zPErph0_uFJ8TjxOPpUY4uhK3Cce9pn3G55d2nnu5xI_f_kNuwjuY_bVyRfs7al_7Z7r9cty1T2s6xHQlloPQerJ0ICkcRBtQASvSVIAcEEFZax2zgoyWnqlgxekJjNYZZQTbiRcsLu_3ui93x7ycT5_b09X8QdEfEYe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Driving pattern identification for EV range estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hai Yu ; Finn Tseng ; McGee, R.</creator><creatorcontrib>Hai Yu ; Finn Tseng ; McGee, R.</creatorcontrib><description>This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles.</description><identifier>ISBN: 9781467315623</identifier><identifier>ISBN: 1467315621</identifier><identifier>EISBN: 1467315613</identifier><identifier>EISBN: 9781467315616</identifier><identifier>DOI: 10.1109/IEVC.2012.6183207</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy consumption ; Force ; Pattern recognition ; Roads ; Vehicles ; Wheels</subject><ispartof>2012 IEEE International Electric Vehicle Conference, 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c138t-5bf25d67b3753b09f331e5727f11af4f4685aa807652e45fe074d6b8464a0ac73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6183207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6183207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hai Yu</creatorcontrib><creatorcontrib>Finn Tseng</creatorcontrib><creatorcontrib>McGee, R.</creatorcontrib><title>Driving pattern identification for EV range estimation</title><title>2012 IEEE International Electric Vehicle Conference</title><addtitle>IEVC</addtitle><description>This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles.</description><subject>Energy consumption</subject><subject>Force</subject><subject>Pattern recognition</subject><subject>Roads</subject><subject>Vehicles</subject><subject>Wheels</subject><isbn>9781467315623</isbn><isbn>1467315621</isbn><isbn>1467315613</isbn><isbn>9781467315616</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0FLAzEUhCMiqHV_gHjJH9g1Ly_Jyx5lXWuh4EV7LdndpEQ0Ldkg-O8tWucyzHeYYRi7BdEAiPZ-1W-6RgqQjQGLUtAZuwZlCEEbwHNWtWT_s8RLVs3zuziKBAqtr5h5zPErph0_uFJ8TjxOPpUY4uhK3Cce9pn3G55d2nnu5xI_f_kNuwjuY_bVyRfs7al_7Z7r9cty1T2s6xHQlloPQerJ0ICkcRBtQASvSVIAcEEFZax2zgoyWnqlgxekJjNYZZQTbiRcsLu_3ui93x7ycT5_b09X8QdEfEYe</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hai Yu</creator><creator>Finn Tseng</creator><creator>McGee, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Driving pattern identification for EV range estimation</title><author>Hai Yu ; Finn Tseng ; McGee, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c138t-5bf25d67b3753b09f331e5727f11af4f4685aa807652e45fe074d6b8464a0ac73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Energy consumption</topic><topic>Force</topic><topic>Pattern recognition</topic><topic>Roads</topic><topic>Vehicles</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Hai Yu</creatorcontrib><creatorcontrib>Finn Tseng</creatorcontrib><creatorcontrib>McGee, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hai Yu</au><au>Finn Tseng</au><au>McGee, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Driving pattern identification for EV range estimation</atitle><btitle>2012 IEEE International Electric Vehicle Conference</btitle><stitle>IEVC</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781467315623</isbn><isbn>1467315621</isbn><eisbn>1467315613</eisbn><eisbn>9781467315616</eisbn><abstract>This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles.</abstract><pub>IEEE</pub><doi>10.1109/IEVC.2012.6183207</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467315623
ispartof 2012 IEEE International Electric Vehicle Conference, 2012, p.1-7
issn
language eng
recordid cdi_ieee_primary_6183207
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Energy consumption
Force
Pattern recognition
Roads
Vehicles
Wheels
title Driving pattern identification for EV range estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Driving%20pattern%20identification%20for%20EV%20range%20estimation&rft.btitle=2012%20IEEE%20International%20Electric%20Vehicle%20Conference&rft.au=Hai%20Yu&rft.date=2012-03&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781467315623&rft.isbn_list=1467315621&rft_id=info:doi/10.1109/IEVC.2012.6183207&rft_dat=%3Cieee_6IE%3E6183207%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467315613&rft.eisbn_list=9781467315616&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6183207&rfr_iscdi=true