Driving pattern identification for EV range estimation
This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation,...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Hai Yu Finn Tseng McGee, R. |
description | This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles. |
doi_str_mv | 10.1109/IEVC.2012.6183207 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6183207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6183207</ieee_id><sourcerecordid>6183207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c138t-5bf25d67b3753b09f331e5727f11af4f4685aa807652e45fe074d6b8464a0ac73</originalsourceid><addsrcrecordid>eNo1j0FLAzEUhCMiqHV_gHjJH9g1Ly_Jyx5lXWuh4EV7LdndpEQ0Ldkg-O8tWucyzHeYYRi7BdEAiPZ-1W-6RgqQjQGLUtAZuwZlCEEbwHNWtWT_s8RLVs3zuziKBAqtr5h5zPErph0_uFJ8TjxOPpUY4uhK3Cce9pn3G55d2nnu5xI_f_kNuwjuY_bVyRfs7al_7Z7r9cty1T2s6xHQlloPQerJ0ICkcRBtQASvSVIAcEEFZax2zgoyWnqlgxekJjNYZZQTbiRcsLu_3ui93x7ycT5_b09X8QdEfEYe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Driving pattern identification for EV range estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hai Yu ; Finn Tseng ; McGee, R.</creator><creatorcontrib>Hai Yu ; Finn Tseng ; McGee, R.</creatorcontrib><description>This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles.</description><identifier>ISBN: 9781467315623</identifier><identifier>ISBN: 1467315621</identifier><identifier>EISBN: 1467315613</identifier><identifier>EISBN: 9781467315616</identifier><identifier>DOI: 10.1109/IEVC.2012.6183207</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy consumption ; Force ; Pattern recognition ; Roads ; Vehicles ; Wheels</subject><ispartof>2012 IEEE International Electric Vehicle Conference, 2012, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c138t-5bf25d67b3753b09f331e5727f11af4f4685aa807652e45fe074d6b8464a0ac73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6183207$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6183207$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hai Yu</creatorcontrib><creatorcontrib>Finn Tseng</creatorcontrib><creatorcontrib>McGee, R.</creatorcontrib><title>Driving pattern identification for EV range estimation</title><title>2012 IEEE International Electric Vehicle Conference</title><addtitle>IEVC</addtitle><description>This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles.</description><subject>Energy consumption</subject><subject>Force</subject><subject>Pattern recognition</subject><subject>Roads</subject><subject>Vehicles</subject><subject>Wheels</subject><isbn>9781467315623</isbn><isbn>1467315621</isbn><isbn>1467315613</isbn><isbn>9781467315616</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0FLAzEUhCMiqHV_gHjJH9g1Ly_Jyx5lXWuh4EV7LdndpEQ0Ldkg-O8tWucyzHeYYRi7BdEAiPZ-1W-6RgqQjQGLUtAZuwZlCEEbwHNWtWT_s8RLVs3zuziKBAqtr5h5zPErph0_uFJ8TjxOPpUY4uhK3Cce9pn3G55d2nnu5xI_f_kNuwjuY_bVyRfs7al_7Z7r9cty1T2s6xHQlloPQerJ0ICkcRBtQASvSVIAcEEFZax2zgoyWnqlgxekJjNYZZQTbiRcsLu_3ui93x7ycT5_b09X8QdEfEYe</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Hai Yu</creator><creator>Finn Tseng</creator><creator>McGee, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Driving pattern identification for EV range estimation</title><author>Hai Yu ; Finn Tseng ; McGee, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c138t-5bf25d67b3753b09f331e5727f11af4f4685aa807652e45fe074d6b8464a0ac73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Energy consumption</topic><topic>Force</topic><topic>Pattern recognition</topic><topic>Roads</topic><topic>Vehicles</topic><topic>Wheels</topic><toplevel>online_resources</toplevel><creatorcontrib>Hai Yu</creatorcontrib><creatorcontrib>Finn Tseng</creatorcontrib><creatorcontrib>McGee, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hai Yu</au><au>Finn Tseng</au><au>McGee, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Driving pattern identification for EV range estimation</atitle><btitle>2012 IEEE International Electric Vehicle Conference</btitle><stitle>IEVC</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><isbn>9781467315623</isbn><isbn>1467315621</isbn><eisbn>1467315613</eisbn><eisbn>9781467315616</eisbn><abstract>This paper presents a driving pattern recognition method based on trip segment clustering. Driving patterns categorize various driving behaviors that contain certain energy demand property in common. It can be applied to various applications including intelligent transportation, emission estimation, passive/active safety controls and energy management controls. In this paper, pattern features are first identified from high impact factors from static and quasi-static environmental and traffic information. A feature based trip/route partitioning algorithm is then developed based on data clustering methods. The driving patterns are finally recognized by synthesizing all partitioned feature zones along the trip/route where each partitioned road section is distinguished by an attribute of feature combination that will result in a distinctive drive energy demand property. The driving pattern recognition is a critical technology especially in solving problems like range estimation and energy consumption preplanning for the plug-in capable electrified vehicles.</abstract><pub>IEEE</pub><doi>10.1109/IEVC.2012.6183207</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467315623 |
ispartof | 2012 IEEE International Electric Vehicle Conference, 2012, p.1-7 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6183207 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Energy consumption Force Pattern recognition Roads Vehicles Wheels |
title | Driving pattern identification for EV range estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Driving%20pattern%20identification%20for%20EV%20range%20estimation&rft.btitle=2012%20IEEE%20International%20Electric%20Vehicle%20Conference&rft.au=Hai%20Yu&rft.date=2012-03&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.isbn=9781467315623&rft.isbn_list=1467315621&rft_id=info:doi/10.1109/IEVC.2012.6183207&rft_dat=%3Cieee_6IE%3E6183207%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1467315613&rft.eisbn_list=9781467315616&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6183207&rfr_iscdi=true |