Ant-genetic algorithms based on multi-objective optimization

In this paper, a new algorithm called multi-objective ant-genetic algorithms, which is based on the continuous space optimization is presented to solve constrained multi-objective function optimization problems. For the trait of multi-objective optimization, we define the pheromone instruction inher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Xianmin Wei
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1818
container_issue
container_start_page 1815
container_title
container_volume 3
creator Xianmin Wei
description In this paper, a new algorithm called multi-objective ant-genetic algorithms, which is based on the continuous space optimization is presented to solve constrained multi-objective function optimization problems. For the trait of multi-objective optimization, we define the pheromone instruction inheritance searching strategy and the method of pheromone updating. Then we combine four means of pheromone instruction inheritance searching, introduction of excellent decision-making, decision set updating and changing algorithm termination condition together so that the constringent speed of searching has improved a lot and the quantity of Pareto optimal decisions were controlled, also the distributing area of decisions were enlarged, the diversity of the swarm was maintained. At the same time, the termination conditions of multi-objective ant-genetic algorithms were presented. In the end, an example was listed to prove that the algorithms were effective, and it can find a group of widely distributed Pareto optimal decisions.
doi_str_mv 10.1109/ICCSNT.2011.6182321
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6182321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6182321</ieee_id><sourcerecordid>6182321</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-65642dfe5978c65c792d5bc61101632b3bdbe3e740d16cb96281b122339473573</originalsourceid><addsrcrecordid>eNo1j8tKw0AYhUdEUNs8QTd5gcT55z7gpgQvhaKLZl8yk791Si4lMwr69AasZ3M4m4_zEbICWgJQ-7Cpqt1bXTIKUCowjDO4IpnVBoTUGqTR-prc_w8lbkkW44nO0ZQZbu7I43pIxREHTMHnTXccp5A--pi7JmKbj0Pef3YpFKM7oU_hC_PxnEIffpoUxmFJbg5NFzG79ILUz0919Vps31821XpbBEtToaQSrD2gnH95Jb22rJXOq9kAFGeOu9YhRy1oC8o7q5gBB4xxboXmUvMFWf1hAyLuz1Pom-l7f_Hlv95ISLE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Ant-genetic algorithms based on multi-objective optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xianmin Wei</creator><creatorcontrib>Xianmin Wei</creatorcontrib><description>In this paper, a new algorithm called multi-objective ant-genetic algorithms, which is based on the continuous space optimization is presented to solve constrained multi-objective function optimization problems. For the trait of multi-objective optimization, we define the pheromone instruction inheritance searching strategy and the method of pheromone updating. Then we combine four means of pheromone instruction inheritance searching, introduction of excellent decision-making, decision set updating and changing algorithm termination condition together so that the constringent speed of searching has improved a lot and the quantity of Pareto optimal decisions were controlled, also the distributing area of decisions were enlarged, the diversity of the swarm was maintained. At the same time, the termination conditions of multi-objective ant-genetic algorithms were presented. In the end, an example was listed to prove that the algorithms were effective, and it can find a group of widely distributed Pareto optimal decisions.</description><identifier>ISBN: 1457715864</identifier><identifier>ISBN: 9781457715860</identifier><identifier>EISBN: 9781457715877</identifier><identifier>EISBN: 1457715856</identifier><identifier>EISBN: 9781457715853</identifier><identifier>EISBN: 1457715872</identifier><identifier>DOI: 10.1109/ICCSNT.2011.6182321</identifier><language>eng</language><publisher>IEEE</publisher><subject>ant-genetic algorithms ; Boundary conditions ; constrained multi-objective optimization ; Optimization ; pareto optimal decisions</subject><ispartof>Proceedings of 2011 International Conference on Computer Science and Network Technology, 2011, Vol.3, p.1815-1818</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6182321$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6182321$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xianmin Wei</creatorcontrib><title>Ant-genetic algorithms based on multi-objective optimization</title><title>Proceedings of 2011 International Conference on Computer Science and Network Technology</title><addtitle>ICCSNT</addtitle><description>In this paper, a new algorithm called multi-objective ant-genetic algorithms, which is based on the continuous space optimization is presented to solve constrained multi-objective function optimization problems. For the trait of multi-objective optimization, we define the pheromone instruction inheritance searching strategy and the method of pheromone updating. Then we combine four means of pheromone instruction inheritance searching, introduction of excellent decision-making, decision set updating and changing algorithm termination condition together so that the constringent speed of searching has improved a lot and the quantity of Pareto optimal decisions were controlled, also the distributing area of decisions were enlarged, the diversity of the swarm was maintained. At the same time, the termination conditions of multi-objective ant-genetic algorithms were presented. In the end, an example was listed to prove that the algorithms were effective, and it can find a group of widely distributed Pareto optimal decisions.</description><subject>ant-genetic algorithms</subject><subject>Boundary conditions</subject><subject>constrained multi-objective optimization</subject><subject>Optimization</subject><subject>pareto optimal decisions</subject><isbn>1457715864</isbn><isbn>9781457715860</isbn><isbn>9781457715877</isbn><isbn>1457715856</isbn><isbn>9781457715853</isbn><isbn>1457715872</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKw0AYhUdEUNs8QTd5gcT55z7gpgQvhaKLZl8yk791Si4lMwr69AasZ3M4m4_zEbICWgJQ-7Cpqt1bXTIKUCowjDO4IpnVBoTUGqTR-prc_w8lbkkW44nO0ZQZbu7I43pIxREHTMHnTXccp5A--pi7JmKbj0Pef3YpFKM7oU_hC_PxnEIffpoUxmFJbg5NFzG79ILUz0919Vps31821XpbBEtToaQSrD2gnH95Jb22rJXOq9kAFGeOu9YhRy1oC8o7q5gBB4xxboXmUvMFWf1hAyLuz1Pom-l7f_Hlv95ISLE</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Xianmin Wei</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Ant-genetic algorithms based on multi-objective optimization</title><author>Xianmin Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-65642dfe5978c65c792d5bc61101632b3bdbe3e740d16cb96281b122339473573</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ant-genetic algorithms</topic><topic>Boundary conditions</topic><topic>constrained multi-objective optimization</topic><topic>Optimization</topic><topic>pareto optimal decisions</topic><toplevel>online_resources</toplevel><creatorcontrib>Xianmin Wei</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xianmin Wei</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Ant-genetic algorithms based on multi-objective optimization</atitle><btitle>Proceedings of 2011 International Conference on Computer Science and Network Technology</btitle><stitle>ICCSNT</stitle><date>2011-12</date><risdate>2011</risdate><volume>3</volume><spage>1815</spage><epage>1818</epage><pages>1815-1818</pages><isbn>1457715864</isbn><isbn>9781457715860</isbn><eisbn>9781457715877</eisbn><eisbn>1457715856</eisbn><eisbn>9781457715853</eisbn><eisbn>1457715872</eisbn><abstract>In this paper, a new algorithm called multi-objective ant-genetic algorithms, which is based on the continuous space optimization is presented to solve constrained multi-objective function optimization problems. For the trait of multi-objective optimization, we define the pheromone instruction inheritance searching strategy and the method of pheromone updating. Then we combine four means of pheromone instruction inheritance searching, introduction of excellent decision-making, decision set updating and changing algorithm termination condition together so that the constringent speed of searching has improved a lot and the quantity of Pareto optimal decisions were controlled, also the distributing area of decisions were enlarged, the diversity of the swarm was maintained. At the same time, the termination conditions of multi-objective ant-genetic algorithms were presented. In the end, an example was listed to prove that the algorithms were effective, and it can find a group of widely distributed Pareto optimal decisions.</abstract><pub>IEEE</pub><doi>10.1109/ICCSNT.2011.6182321</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457715864
ispartof Proceedings of 2011 International Conference on Computer Science and Network Technology, 2011, Vol.3, p.1815-1818
issn
language eng
recordid cdi_ieee_primary_6182321
source IEEE Electronic Library (IEL) Conference Proceedings
subjects ant-genetic algorithms
Boundary conditions
constrained multi-objective optimization
Optimization
pareto optimal decisions
title Ant-genetic algorithms based on multi-objective optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Ant-genetic%20algorithms%20based%20on%20multi-objective%20optimization&rft.btitle=Proceedings%20of%202011%20International%20Conference%20on%20Computer%20Science%20and%20Network%20Technology&rft.au=Xianmin%20Wei&rft.date=2011-12&rft.volume=3&rft.spage=1815&rft.epage=1818&rft.pages=1815-1818&rft.isbn=1457715864&rft.isbn_list=9781457715860&rft_id=info:doi/10.1109/ICCSNT.2011.6182321&rft_dat=%3Cieee_6IE%3E6182321%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457715877&rft.eisbn_list=1457715856&rft.eisbn_list=9781457715853&rft.eisbn_list=1457715872&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6182321&rfr_iscdi=true