Iteration effect on vision based simultaneous localization and mapping using Kalman filters family

Simultaneous Localization and Mapping (SLAM) is one of the most fundamental and challenging problems in mobile robotics. In this paper solving vision based SLAM problem using Kalman filters family have been provided. It is focused on mobile robot equipped with stereo vision sensor which moves in an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Darabi, S., Shahri, A. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1089
container_issue
container_start_page 1084
container_title
container_volume
creator Darabi, S.
Shahri, A. M.
description Simultaneous Localization and Mapping (SLAM) is one of the most fundamental and challenging problems in mobile robotics. In this paper solving vision based SLAM problem using Kalman filters family have been provided. It is focused on mobile robot equipped with stereo vision sensor which moves in an indoor environment. The mobile robot navigated among the landmarks which were detected by Scale Invariant Feature Transform (SIFT) method. The Extended Kalman Filter (EKF) and Sigma Point Kalman Filter (SPKF) approaches have been used to solve this SLAM problem. Then the role of Iteration in these filters to improve estimation state accuracy in SLAM has been investigated. Finally in the experimental results the better state estimation accuracy in iterated EKF and SPKF has been shown.
doi_str_mv 10.1109/ROBIO.2011.6181432
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6181432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6181432</ieee_id><sourcerecordid>6181432</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-69387f8a9771a6e83298d364e9815b292734b8e3bf3013efea600c5158eb3b1b3</originalsourceid><addsrcrecordid>eNo1kM1OwzAQhI0QElD6AnDxC7R4s01sH6HiJ6JSJNR7tW7XyMhJozhBKk9PqpY57Hy70s5hhLgHNQdQ9vGzei6reaYA5gUYWGB2IaZWj5RrnQFqvBS3_0thrsU0pW81Siu0qG6EK3vuqA_7RrL3vO3lSD8hHQ-OEu9kCvUQe2p4PyQZ91uK4ff0QM1O1tS2ofmSQzrOD4o1NdKHOKYm6akO8XAnrjzFxNOzT8T69WW9fJ-tqrdy-bSaBav6WWHRaG_Iag1UsMHMmh0WC7YGcpfZTOPCGUbnUQGyZyqU2uaQG3bowOFEPJxiAzNv2i7U1B0251bwD6D_VyQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Iteration effect on vision based simultaneous localization and mapping using Kalman filters family</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Darabi, S. ; Shahri, A. M.</creator><creatorcontrib>Darabi, S. ; Shahri, A. M.</creatorcontrib><description>Simultaneous Localization and Mapping (SLAM) is one of the most fundamental and challenging problems in mobile robotics. In this paper solving vision based SLAM problem using Kalman filters family have been provided. It is focused on mobile robot equipped with stereo vision sensor which moves in an indoor environment. The mobile robot navigated among the landmarks which were detected by Scale Invariant Feature Transform (SIFT) method. The Extended Kalman Filter (EKF) and Sigma Point Kalman Filter (SPKF) approaches have been used to solve this SLAM problem. Then the role of Iteration in these filters to improve estimation state accuracy in SLAM has been investigated. Finally in the experimental results the better state estimation accuracy in iterated EKF and SPKF has been shown.</description><identifier>ISBN: 1457721368</identifier><identifier>ISBN: 9781457721366</identifier><identifier>EISBN: 9781457721373</identifier><identifier>EISBN: 1457721384</identifier><identifier>EISBN: 1457721376</identifier><identifier>EISBN: 9781457721380</identifier><identifier>DOI: 10.1109/ROBIO.2011.6181432</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Covariance matrix ; Kalman filters ; Mathematical model ; Simultaneous localization and mapping ; Trajectory ; Vehicles</subject><ispartof>2011 IEEE International Conference on Robotics and Biomimetics, 2011, p.1084-1089</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6181432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27923,54918</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6181432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Darabi, S.</creatorcontrib><creatorcontrib>Shahri, A. M.</creatorcontrib><title>Iteration effect on vision based simultaneous localization and mapping using Kalman filters family</title><title>2011 IEEE International Conference on Robotics and Biomimetics</title><addtitle>ROBIO</addtitle><description>Simultaneous Localization and Mapping (SLAM) is one of the most fundamental and challenging problems in mobile robotics. In this paper solving vision based SLAM problem using Kalman filters family have been provided. It is focused on mobile robot equipped with stereo vision sensor which moves in an indoor environment. The mobile robot navigated among the landmarks which were detected by Scale Invariant Feature Transform (SIFT) method. The Extended Kalman Filter (EKF) and Sigma Point Kalman Filter (SPKF) approaches have been used to solve this SLAM problem. Then the role of Iteration in these filters to improve estimation state accuracy in SLAM has been investigated. Finally in the experimental results the better state estimation accuracy in iterated EKF and SPKF has been shown.</description><subject>Accuracy</subject><subject>Covariance matrix</subject><subject>Kalman filters</subject><subject>Mathematical model</subject><subject>Simultaneous localization and mapping</subject><subject>Trajectory</subject><subject>Vehicles</subject><isbn>1457721368</isbn><isbn>9781457721366</isbn><isbn>9781457721373</isbn><isbn>1457721384</isbn><isbn>1457721376</isbn><isbn>9781457721380</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1OwzAQhI0QElD6AnDxC7R4s01sH6HiJ6JSJNR7tW7XyMhJozhBKk9PqpY57Hy70s5hhLgHNQdQ9vGzei6reaYA5gUYWGB2IaZWj5RrnQFqvBS3_0thrsU0pW81Siu0qG6EK3vuqA_7RrL3vO3lSD8hHQ-OEu9kCvUQe2p4PyQZ91uK4ff0QM1O1tS2ofmSQzrOD4o1NdKHOKYm6akO8XAnrjzFxNOzT8T69WW9fJ-tqrdy-bSaBav6WWHRaG_Iag1UsMHMmh0WC7YGcpfZTOPCGUbnUQGyZyqU2uaQG3bowOFEPJxiAzNv2i7U1B0251bwD6D_VyQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Darabi, S.</creator><creator>Shahri, A. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201112</creationdate><title>Iteration effect on vision based simultaneous localization and mapping using Kalman filters family</title><author>Darabi, S. ; Shahri, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-69387f8a9771a6e83298d364e9815b292734b8e3bf3013efea600c5158eb3b1b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Covariance matrix</topic><topic>Kalman filters</topic><topic>Mathematical model</topic><topic>Simultaneous localization and mapping</topic><topic>Trajectory</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Darabi, S.</creatorcontrib><creatorcontrib>Shahri, A. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Darabi, S.</au><au>Shahri, A. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Iteration effect on vision based simultaneous localization and mapping using Kalman filters family</atitle><btitle>2011 IEEE International Conference on Robotics and Biomimetics</btitle><stitle>ROBIO</stitle><date>2011-12</date><risdate>2011</risdate><spage>1084</spage><epage>1089</epage><pages>1084-1089</pages><isbn>1457721368</isbn><isbn>9781457721366</isbn><eisbn>9781457721373</eisbn><eisbn>1457721384</eisbn><eisbn>1457721376</eisbn><eisbn>9781457721380</eisbn><abstract>Simultaneous Localization and Mapping (SLAM) is one of the most fundamental and challenging problems in mobile robotics. In this paper solving vision based SLAM problem using Kalman filters family have been provided. It is focused on mobile robot equipped with stereo vision sensor which moves in an indoor environment. The mobile robot navigated among the landmarks which were detected by Scale Invariant Feature Transform (SIFT) method. The Extended Kalman Filter (EKF) and Sigma Point Kalman Filter (SPKF) approaches have been used to solve this SLAM problem. Then the role of Iteration in these filters to improve estimation state accuracy in SLAM has been investigated. Finally in the experimental results the better state estimation accuracy in iterated EKF and SPKF has been shown.</abstract><pub>IEEE</pub><doi>10.1109/ROBIO.2011.6181432</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457721368
ispartof 2011 IEEE International Conference on Robotics and Biomimetics, 2011, p.1084-1089
issn
language eng
recordid cdi_ieee_primary_6181432
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Covariance matrix
Kalman filters
Mathematical model
Simultaneous localization and mapping
Trajectory
Vehicles
title Iteration effect on vision based simultaneous localization and mapping using Kalman filters family
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Iteration%20effect%20on%20vision%20based%20simultaneous%20localization%20and%20mapping%20using%20Kalman%20filters%20family&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Robotics%20and%20Biomimetics&rft.au=Darabi,%20S.&rft.date=2011-12&rft.spage=1084&rft.epage=1089&rft.pages=1084-1089&rft.isbn=1457721368&rft.isbn_list=9781457721366&rft_id=info:doi/10.1109/ROBIO.2011.6181432&rft_dat=%3Cieee_6IE%3E6181432%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457721373&rft.eisbn_list=1457721384&rft.eisbn_list=1457721376&rft.eisbn_list=9781457721380&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6181432&rfr_iscdi=true