Human activity recognition for a content search system considering situations of smartphone users

Smart-phone users can search for information about surrounding facilities or a route to their destination. However, it is difficult to get or search for information while walking because of low legibility. To address this problem, users have to stop walking or enlarge the screen. Our previously prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mashita, T., Shimatani, K., Iwata, M., Miyamoto, H., Komaki, D., Hara, T., Kiyokawa, K., Takemura, H., Nishio, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2
container_issue
container_start_page 1
container_title
container_volume
creator Mashita, T.
Shimatani, K.
Iwata, M.
Miyamoto, H.
Komaki, D.
Hara, T.
Kiyokawa, K.
Takemura, H.
Nishio, S.
description Smart-phone users can search for information about surrounding facilities or a route to their destination. However, it is difficult to get or search for information while walking because of low legibility. To address this problem, users have to stop walking or enlarge the screen. Our previously proposed system for smart-phone switches the information presentation policies in response to the user's context. In this paper we describe our context recognition mechanism for this system. This mechanism estimates user context from sensors embedded in a smart-phone. We use a Support Vector Machine for the context classification and compare four types of feature values consisting of FFT and 3 types of Wavelet Transforms. Experimental results show that recognition rates are 87.2 % with FFT, 90.9 % with Gabor Wavelet, 91.8 % with Haar Wavelet, and 92.1 % with MexicanHat Wavelet.
doi_str_mv 10.1109/VR.2012.6180847
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6180847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6180847</ieee_id><sourcerecordid>6180847</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c66f69b576db4ddf13dee30dff0ff023fb7dc9c76bd8f37759825cb33b1fbcc63</originalsourceid><addsrcrecordid>eNpVUEtLAzEYjC-w1p49eMkf2JrHbr7sUYpaoSCIei15fGkjNluSVOi_12IvwsDADDMMQ8gNZ1POWX_38ToVjIup4prpFk7IpAfNWwWSi1aJUzISErqmk0Kd_fOgPycjzjQ0WgC7JFelfDLGQKl2RMx8tzGJGlfjd6x7mtENqxRrHBINQ6aGuiFVTJUWNNmtadmXipuDWqLHHNOKllh35pAodAi0bEyu2_WQkO4K5nJNLoL5Kjg58pi8Pz68zebN4uXpeXa_aCKHrjZOqaB624HytvU-cOkRJfMhsF8IGSx41ztQ1usgAbpei85ZKS0P1jklx-T2rzci4nKb4--O_fL4lvwBQZtcjQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Human activity recognition for a content search system considering situations of smartphone users</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mashita, T. ; Shimatani, K. ; Iwata, M. ; Miyamoto, H. ; Komaki, D. ; Hara, T. ; Kiyokawa, K. ; Takemura, H. ; Nishio, S.</creator><creatorcontrib>Mashita, T. ; Shimatani, K. ; Iwata, M. ; Miyamoto, H. ; Komaki, D. ; Hara, T. ; Kiyokawa, K. ; Takemura, H. ; Nishio, S.</creatorcontrib><description>Smart-phone users can search for information about surrounding facilities or a route to their destination. However, it is difficult to get or search for information while walking because of low legibility. To address this problem, users have to stop walking or enlarge the screen. Our previously proposed system for smart-phone switches the information presentation policies in response to the user's context. In this paper we describe our context recognition mechanism for this system. This mechanism estimates user context from sensors embedded in a smart-phone. We use a Support Vector Machine for the context classification and compare four types of feature values consisting of FFT and 3 types of Wavelet Transforms. Experimental results show that recognition rates are 87.2 % with FFT, 90.9 % with Gabor Wavelet, 91.8 % with Haar Wavelet, and 92.1 % with MexicanHat Wavelet.</description><identifier>ISSN: 1087-8270</identifier><identifier>ISBN: 9781467312479</identifier><identifier>ISBN: 1467312479</identifier><identifier>EISSN: 2375-5326</identifier><identifier>EISBN: 9781467312462</identifier><identifier>EISBN: 1467312460</identifier><identifier>DOI: 10.1109/VR.2012.6180847</identifier><language>eng</language><publisher>IEEE</publisher><subject>Context aware system ; Context recognition</subject><ispartof>2012 IEEE Virtual Reality Workshops (VRW), 2012, p.1-2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6180847$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6180847$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mashita, T.</creatorcontrib><creatorcontrib>Shimatani, K.</creatorcontrib><creatorcontrib>Iwata, M.</creatorcontrib><creatorcontrib>Miyamoto, H.</creatorcontrib><creatorcontrib>Komaki, D.</creatorcontrib><creatorcontrib>Hara, T.</creatorcontrib><creatorcontrib>Kiyokawa, K.</creatorcontrib><creatorcontrib>Takemura, H.</creatorcontrib><creatorcontrib>Nishio, S.</creatorcontrib><title>Human activity recognition for a content search system considering situations of smartphone users</title><title>2012 IEEE Virtual Reality Workshops (VRW)</title><addtitle>VR</addtitle><description>Smart-phone users can search for information about surrounding facilities or a route to their destination. However, it is difficult to get or search for information while walking because of low legibility. To address this problem, users have to stop walking or enlarge the screen. Our previously proposed system for smart-phone switches the information presentation policies in response to the user's context. In this paper we describe our context recognition mechanism for this system. This mechanism estimates user context from sensors embedded in a smart-phone. We use a Support Vector Machine for the context classification and compare four types of feature values consisting of FFT and 3 types of Wavelet Transforms. Experimental results show that recognition rates are 87.2 % with FFT, 90.9 % with Gabor Wavelet, 91.8 % with Haar Wavelet, and 92.1 % with MexicanHat Wavelet.</description><subject>Context aware system</subject><subject>Context recognition</subject><issn>1087-8270</issn><issn>2375-5326</issn><isbn>9781467312479</isbn><isbn>1467312479</isbn><isbn>9781467312462</isbn><isbn>1467312460</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtLAzEYjC-w1p49eMkf2JrHbr7sUYpaoSCIei15fGkjNluSVOi_12IvwsDADDMMQ8gNZ1POWX_38ToVjIup4prpFk7IpAfNWwWSi1aJUzISErqmk0Kd_fOgPycjzjQ0WgC7JFelfDLGQKl2RMx8tzGJGlfjd6x7mtENqxRrHBINQ6aGuiFVTJUWNNmtadmXipuDWqLHHNOKllh35pAodAi0bEyu2_WQkO4K5nJNLoL5Kjg58pi8Pz68zebN4uXpeXa_aCKHrjZOqaB624HytvU-cOkRJfMhsF8IGSx41ztQ1usgAbpei85ZKS0P1jklx-T2rzci4nKb4--O_fL4lvwBQZtcjQ</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Mashita, T.</creator><creator>Shimatani, K.</creator><creator>Iwata, M.</creator><creator>Miyamoto, H.</creator><creator>Komaki, D.</creator><creator>Hara, T.</creator><creator>Kiyokawa, K.</creator><creator>Takemura, H.</creator><creator>Nishio, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201203</creationdate><title>Human activity recognition for a content search system considering situations of smartphone users</title><author>Mashita, T. ; Shimatani, K. ; Iwata, M. ; Miyamoto, H. ; Komaki, D. ; Hara, T. ; Kiyokawa, K. ; Takemura, H. ; Nishio, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c66f69b576db4ddf13dee30dff0ff023fb7dc9c76bd8f37759825cb33b1fbcc63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Context aware system</topic><topic>Context recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Mashita, T.</creatorcontrib><creatorcontrib>Shimatani, K.</creatorcontrib><creatorcontrib>Iwata, M.</creatorcontrib><creatorcontrib>Miyamoto, H.</creatorcontrib><creatorcontrib>Komaki, D.</creatorcontrib><creatorcontrib>Hara, T.</creatorcontrib><creatorcontrib>Kiyokawa, K.</creatorcontrib><creatorcontrib>Takemura, H.</creatorcontrib><creatorcontrib>Nishio, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mashita, T.</au><au>Shimatani, K.</au><au>Iwata, M.</au><au>Miyamoto, H.</au><au>Komaki, D.</au><au>Hara, T.</au><au>Kiyokawa, K.</au><au>Takemura, H.</au><au>Nishio, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Human activity recognition for a content search system considering situations of smartphone users</atitle><btitle>2012 IEEE Virtual Reality Workshops (VRW)</btitle><stitle>VR</stitle><date>2012-03</date><risdate>2012</risdate><spage>1</spage><epage>2</epage><pages>1-2</pages><issn>1087-8270</issn><eissn>2375-5326</eissn><isbn>9781467312479</isbn><isbn>1467312479</isbn><eisbn>9781467312462</eisbn><eisbn>1467312460</eisbn><abstract>Smart-phone users can search for information about surrounding facilities or a route to their destination. However, it is difficult to get or search for information while walking because of low legibility. To address this problem, users have to stop walking or enlarge the screen. Our previously proposed system for smart-phone switches the information presentation policies in response to the user's context. In this paper we describe our context recognition mechanism for this system. This mechanism estimates user context from sensors embedded in a smart-phone. We use a Support Vector Machine for the context classification and compare four types of feature values consisting of FFT and 3 types of Wavelet Transforms. Experimental results show that recognition rates are 87.2 % with FFT, 90.9 % with Gabor Wavelet, 91.8 % with Haar Wavelet, and 92.1 % with MexicanHat Wavelet.</abstract><pub>IEEE</pub><doi>10.1109/VR.2012.6180847</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1087-8270
ispartof 2012 IEEE Virtual Reality Workshops (VRW), 2012, p.1-2
issn 1087-8270
2375-5326
language eng
recordid cdi_ieee_primary_6180847
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Context aware system
Context recognition
title Human activity recognition for a content search system considering situations of smartphone users
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Human%20activity%20recognition%20for%20a%20content%20search%20system%20considering%20situations%20of%20smartphone%20users&rft.btitle=2012%20IEEE%20Virtual%20Reality%20Workshops%20(VRW)&rft.au=Mashita,%20T.&rft.date=2012-03&rft.spage=1&rft.epage=2&rft.pages=1-2&rft.issn=1087-8270&rft.eissn=2375-5326&rft.isbn=9781467312479&rft.isbn_list=1467312479&rft_id=info:doi/10.1109/VR.2012.6180847&rft_dat=%3Cieee_6IE%3E6180847%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781467312462&rft.eisbn_list=1467312460&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6180847&rfr_iscdi=true