Gbest-guided Imperialist Competitive Algorithm for Global Numerical Optimization

Imperialist competitive(IC) optimization algorithm invented recently by Atashpaz Gargari is a heuristics algorithm. However, there is still an insufficiency in IC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by Particle swarm optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yang Shi-da, Yi Ya-lin, Shan Zhi-yong
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 355
container_issue
container_start_page 352
container_title
container_volume
creator Yang Shi-da
Yi Ya-lin
Shan Zhi-yong
description Imperialist competitive(IC) optimization algorithm invented recently by Atashpaz Gargari is a heuristics algorithm. However, there is still an insufficiency in IC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by Particle swarm optimization, we propose an improved IC algorithm called gbest-guided IC (GIC) algorithm by incorporating the information of global best (gbest) solution into the solution search equation to improve the exploitation. The experimental results tested on a set of numerical benchmark functions show that GIC algorithm can outperform IC algorithm in most of the experiments.
doi_str_mv 10.1109/CDCIEM.2012.90
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6178488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6178488</ieee_id><sourcerecordid>6178488</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-54d031c0d4ba0c259ce2073b3ca3a29ae5a1fc3aa612023264915ee45e99f1793</originalsourceid><addsrcrecordid>eNotjE1Pg0AURccYE7WydeOGPwC-N5_MssGKJNW66L4Z4FHHgBCYmuivL4nezT03ObmM3SOkiGAf86e83LymHJCnFi5YZE0GRlsltbB4yW5RaiNAqgyvWTTPn7DEAM-EvGHvRUVzSI4n31ATl_1Ik3edn0OcD8sIPvhvitfdcZh8-Ojjdpjiohsq18Vvp36R64V2Y_C9_3XBD1937Kp13UzRf6_Y_nmzz1-S7a4o8_U28RZComQDAmtoZOWg5srWxMGIStROOG4dKYdtLZzTyIELrqVFRSQVWduisWLFHv5uPREdxsn3bvo5aDSZzDJxBsXHT7s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Gbest-guided Imperialist Competitive Algorithm for Global Numerical Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yang Shi-da ; Yi Ya-lin ; Shan Zhi-yong</creator><creatorcontrib>Yang Shi-da ; Yi Ya-lin ; Shan Zhi-yong</creatorcontrib><description>Imperialist competitive(IC) optimization algorithm invented recently by Atashpaz Gargari is a heuristics algorithm. However, there is still an insufficiency in IC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by Particle swarm optimization, we propose an improved IC algorithm called gbest-guided IC (GIC) algorithm by incorporating the information of global best (gbest) solution into the solution search equation to improve the exploitation. The experimental results tested on a set of numerical benchmark functions show that GIC algorithm can outperform IC algorithm in most of the experiments.</description><identifier>ISBN: 1467304581</identifier><identifier>ISBN: 9781467304580</identifier><identifier>EISBN: 9780769546391</identifier><identifier>EISBN: 0769546390</identifier><identifier>DOI: 10.1109/CDCIEM.2012.90</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Equations ; Genetic algorithms ; Global optimization ; Heuristic algorithms ; Imperialist competitive algorithm ; Integrated circuits ; Optimization ; Search problems</subject><ispartof>2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2012, p.352-355</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6178488$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6178488$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang Shi-da</creatorcontrib><creatorcontrib>Yi Ya-lin</creatorcontrib><creatorcontrib>Shan Zhi-yong</creatorcontrib><title>Gbest-guided Imperialist Competitive Algorithm for Global Numerical Optimization</title><title>2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring</title><addtitle>cdciem</addtitle><description>Imperialist competitive(IC) optimization algorithm invented recently by Atashpaz Gargari is a heuristics algorithm. However, there is still an insufficiency in IC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by Particle swarm optimization, we propose an improved IC algorithm called gbest-guided IC (GIC) algorithm by incorporating the information of global best (gbest) solution into the solution search equation to improve the exploitation. The experimental results tested on a set of numerical benchmark functions show that GIC algorithm can outperform IC algorithm in most of the experiments.</description><subject>Benchmark testing</subject><subject>Equations</subject><subject>Genetic algorithms</subject><subject>Global optimization</subject><subject>Heuristic algorithms</subject><subject>Imperialist competitive algorithm</subject><subject>Integrated circuits</subject><subject>Optimization</subject><subject>Search problems</subject><isbn>1467304581</isbn><isbn>9781467304580</isbn><isbn>9780769546391</isbn><isbn>0769546390</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjE1Pg0AURccYE7WydeOGPwC-N5_MssGKJNW66L4Z4FHHgBCYmuivL4nezT03ObmM3SOkiGAf86e83LymHJCnFi5YZE0GRlsltbB4yW5RaiNAqgyvWTTPn7DEAM-EvGHvRUVzSI4n31ATl_1Ik3edn0OcD8sIPvhvitfdcZh8-Ojjdpjiohsq18Vvp36R64V2Y_C9_3XBD1937Kp13UzRf6_Y_nmzz1-S7a4o8_U28RZComQDAmtoZOWg5srWxMGIStROOG4dKYdtLZzTyIELrqVFRSQVWduisWLFHv5uPREdxsn3bvo5aDSZzDJxBsXHT7s</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Yang Shi-da</creator><creator>Yi Ya-lin</creator><creator>Shan Zhi-yong</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Gbest-guided Imperialist Competitive Algorithm for Global Numerical Optimization</title><author>Yang Shi-da ; Yi Ya-lin ; Shan Zhi-yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-54d031c0d4ba0c259ce2073b3ca3a29ae5a1fc3aa612023264915ee45e99f1793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmark testing</topic><topic>Equations</topic><topic>Genetic algorithms</topic><topic>Global optimization</topic><topic>Heuristic algorithms</topic><topic>Imperialist competitive algorithm</topic><topic>Integrated circuits</topic><topic>Optimization</topic><topic>Search problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang Shi-da</creatorcontrib><creatorcontrib>Yi Ya-lin</creatorcontrib><creatorcontrib>Shan Zhi-yong</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang Shi-da</au><au>Yi Ya-lin</au><au>Shan Zhi-yong</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Gbest-guided Imperialist Competitive Algorithm for Global Numerical Optimization</atitle><btitle>2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring</btitle><stitle>cdciem</stitle><date>2012-03</date><risdate>2012</risdate><spage>352</spage><epage>355</epage><pages>352-355</pages><isbn>1467304581</isbn><isbn>9781467304580</isbn><eisbn>9780769546391</eisbn><eisbn>0769546390</eisbn><abstract>Imperialist competitive(IC) optimization algorithm invented recently by Atashpaz Gargari is a heuristics algorithm. However, there is still an insufficiency in IC algorithm regarding its solution search equation, which is good at exploration but poor at exploitation. Inspired by Particle swarm optimization, we propose an improved IC algorithm called gbest-guided IC (GIC) algorithm by incorporating the information of global best (gbest) solution into the solution search equation to improve the exploitation. The experimental results tested on a set of numerical benchmark functions show that GIC algorithm can outperform IC algorithm in most of the experiments.</abstract><pub>IEEE</pub><doi>10.1109/CDCIEM.2012.90</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1467304581
ispartof 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, 2012, p.352-355
issn
language eng
recordid cdi_ieee_primary_6178488
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Equations
Genetic algorithms
Global optimization
Heuristic algorithms
Imperialist competitive algorithm
Integrated circuits
Optimization
Search problems
title Gbest-guided Imperialist Competitive Algorithm for Global Numerical Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Gbest-guided%20Imperialist%20Competitive%20Algorithm%20for%20Global%20Numerical%20Optimization&rft.btitle=2012%20International%20Conference%20on%20Computer%20Distributed%20Control%20and%20Intelligent%20Environmental%20Monitoring&rft.au=Yang%20Shi-da&rft.date=2012-03&rft.spage=352&rft.epage=355&rft.pages=352-355&rft.isbn=1467304581&rft.isbn_list=9781467304580&rft_id=info:doi/10.1109/CDCIEM.2012.90&rft_dat=%3Cieee_6IE%3E6178488%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769546391&rft.eisbn_list=0769546390&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6178488&rfr_iscdi=true